r是相关系数,r=∑(Xi-X)(Yi-Y)/根号[∑(Xi-X)²×∑(Yi-Y)²],上式中”∑”表示从i=1到i=n求和。
要求这个值大于5%。对大部分的行为研究者来讲,最重要的是回归系数。年龄增加1个单位,文档的质量就下降 -.1020986个单位,表明年长的人对文档质量的评价会更低。这个变量相应的t值是 -2.10,绝对值大于2,p值也<0.05,所以是显著的。
扩展资料:
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。不太一般的情况。
一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布。
参考资料来源:百度百科-线性回归
r是相关系数
r=∑(Xi-X)(Yi-Y)/根号[∑(Xi-X)²×∑(Yi-Y)²]
上式中”∑”表示从i=1到i=n求和
X、Y分别表示Xi、Yi的平均数
线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线。一般地,影响y的因素往往不止一个,假设有x1,x2,...,xk,k个因素。
扩展资料:
如果目标是预测或者映射,线性回归可以用来对观测数据集的和X的值拟合出一个预测模型。当完成这样一个模型以后,对于一个新增的X值,在没有给定与它相配对的y的情况下,可以用这个拟合过的模型预测出一个y值。
给定一个变量y和一些变量X1,...,Xp,这些变量有可能与y相关,线性回归分析可以用来量化y与Xj之间相关性的强度,评估出与y不相关的Xj,并识别出哪些Xj的子集包含了关于y的冗余信息。
r=∑(Xi-X)(Yi-Y)/根号[∑(Xi-X)²×∑(Yi-Y)²]
上式中”∑”表示从i=1到i=n求和;X,Y分别表示Xi,Yi的平均数~
广告 您可能关注的内容 |