为什么导函数不存在第一类间断点

 我来答
欣欣老师解惑
高粉答主

推荐于2017-12-15 · 关注我不会让你失望
知道顶级答主
回答量:7.1万
采纳率:58%
帮助的人:2733万
展开全部
我把660上的证明拿上来了:设f(x)在(a,b)可导,x0属于(a,b)是f`(x)的间断点.反证法,若为第一类间断点f`(x)在x0点的右极限为A+,左极限为A-推出f(x)在x0点的右导数为A+,左导数为A-又因f(x)在x0点的导数存在,所以左导数等于右导数等于f`(x0)推出f`(x)在x0点的极限等于f`(x0)推出f`(x0)在x0点连续与已知矛盾,所以不存在第一类间断点PS:f`(x)是指f(x)的导数
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式