一道有争议的题目,数学
已知a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)的值a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)=(a/b+c/...
已知a+b+c=0,求a(1/b+1/c)+b(1/c+1/a)+c(1/a+1/b)的值
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)=(a/b+c/b)+(a/c+b/c)+(b/a+c/a)=(a+c)/b+(a+b)/c+(b+c)/a=(-b)/b+(-c)/c+(-a)/a=-1-1-1=-3.
解: ∵a+b+c=0
∴a+b=-c, a+c=-b, b+c=-a
∴原式=-a²/bc-b²/ac-c²/ab+3
=-(a³+b³+c³-3abc)/abc
=-[(a+b)³+c³-3a²b-3ab²-3abc]/abc
=-[(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab(a+b+c)]/abc
=-(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab)/abc
=0.
哪个对???????! 展开
a(1/b+1/c)+b(1/a+1/c)+c(1/a+1/b)=(a/b+c/b)+(a/c+b/c)+(b/a+c/a)=(a+c)/b+(a+b)/c+(b+c)/a=(-b)/b+(-c)/c+(-a)/a=-1-1-1=-3.
解: ∵a+b+c=0
∴a+b=-c, a+c=-b, b+c=-a
∴原式=-a²/bc-b²/ac-c²/ab+3
=-(a³+b³+c³-3abc)/abc
=-[(a+b)³+c³-3a²b-3ab²-3abc]/abc
=-[(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab(a+b+c)]/abc
=-(a+b+c)(a²+b²+2ab-ac-bc+c²-3ab)/abc
=0.
哪个对???????! 展开
7个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询