3个回答
展开全部
答:
sin²x-sin²y
=(sinx+siny)(sinx-siny)
=2sin[(x+y)/2]cos[(x-y)/2] * 2cos[(x+y)/2]sin[(x-y)/2]
=sin(x+y)*sin(x-y)
所以:sin²x-sin²y=sin(x+y)*sin(x-y)
sin²x-sin²y
=(sinx+siny)(sinx-siny)
=2sin[(x+y)/2]cos[(x-y)/2] * 2cos[(x+y)/2]sin[(x-y)/2]
=sin(x+y)*sin(x-y)
所以:sin²x-sin²y=sin(x+y)*sin(x-y)
追问
=2sin[(x+y)/2]cos[(x-y)/2] * 2cos[(x+y)/2]sin[(x-y)/2]
=sin(x+y)*sin(x-y)
这两部为什么直接相等了?
追答
因为两倍角公式:sin2A=2sinAcosA
所以:
=2sin[(x+y)/2]cos[(x-y)/2] * 2cos[(x+y)/2]sin[(x-y)/2]
=2sin[(x+y)/2]cos[(x+y)/2] * 2cos[(x-y)/2]sin[(x-y)/2] 把两个cos的因子调换一下位置
=sin(x+y)*sin(x-y)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(x+y)sin(x-y)=(sinxcosy-sinycosx)(sinxcosy-sinycosx)=sinx^2cosy^2-siny^2cosx^2
=sinx^2cosy^2+sinx^2siny^2-sinx^2siny^2-siny^2cosx^2
=sinx^2(cosy^2+siny^2)-siny^2(sinx^2+cosx^2)=sinx^2-siny^2
=sinx^2cosy^2+sinx^2siny^2-sinx^2siny^2-siny^2cosx^2
=sinx^2(cosy^2+siny^2)-siny^2(sinx^2+cosx^2)=sinx^2-siny^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询