
若在三角形ABC中,a、b、c三边成等差数列,则:(cosA+cosC)/(1+cosAcosC)=?(大题做法)
2013-06-29
展开全部
a,b,c等差数列,所以a+c=2b
正弦定理,sinA+sinC=2sinB=2sin(A+C)=2sin[2*(A+C)/2]=4sin[(A+C)/2]cos[(A+C)/2]
和差化积:2sin[(A+C)/2]cos[(A-C)/2]=4sin[(A+C)/2]cos[(A+C)/2]
两边同除以2sin[(A+C)/2]得cos[(A-C)/2]=2cos[(A+C)/2] ……(1)
两边平方并用二倍角余弦公式得1+cos(A-C)=4+4cos(A+C)
展开,整理得5sinAsinC=3(1+cosAcosC)
再利用和差化积和(1)式
(cosA+cosC)/(1+cosAcosC)
=3(cosA+cosC)/(5sinAsinC)
=6{cos[(A+C)/2]cos[(A-C)/2]}/(5sinAsinC)
=3cos^2[(A-C)/2]/(5sinAsinC)
=3[1+cos(A-C)]/(10sinAsinC)
=3(1+cosAcosC+sinAsinC)/(10sinAsinC)
=(5sinAsinC+3sinAsinC)/(10sinAsinC)
=8/10=4/5
正弦定理,sinA+sinC=2sinB=2sin(A+C)=2sin[2*(A+C)/2]=4sin[(A+C)/2]cos[(A+C)/2]
和差化积:2sin[(A+C)/2]cos[(A-C)/2]=4sin[(A+C)/2]cos[(A+C)/2]
两边同除以2sin[(A+C)/2]得cos[(A-C)/2]=2cos[(A+C)/2] ……(1)
两边平方并用二倍角余弦公式得1+cos(A-C)=4+4cos(A+C)
展开,整理得5sinAsinC=3(1+cosAcosC)
再利用和差化积和(1)式
(cosA+cosC)/(1+cosAcosC)
=3(cosA+cosC)/(5sinAsinC)
=6{cos[(A+C)/2]cos[(A-C)/2]}/(5sinAsinC)
=3cos^2[(A-C)/2]/(5sinAsinC)
=3[1+cos(A-C)]/(10sinAsinC)
=3(1+cosAcosC+sinAsinC)/(10sinAsinC)
=(5sinAsinC+3sinAsinC)/(10sinAsinC)
=8/10=4/5
2013-06-29
展开全部
a,b,c等差数列,a+c=2b
正弦定理,sinA+sinC=2sinB
和差化积,2sin(A+C)/2cos(A-C)/2=4sin(A+C)/2cos(A+C)/2
cos(A-C)/2=2cos(A+C)/2 ....1
两边平方,1+cos(A-C)=4+4cos(A+C)
展开,整理,5sinAsinC=3(1+cosAcosC)
再利用和差化积和1式
(cosA+cosC)/(1+cosAcosC)
=3(cosA+cosC)/(5sinAsinC)
=6cos(A+C)/2cos(A-C)/2/(5sinAsinC)
=3cos^2(A-C)/(5sinAsinC)
=3(1+cos(A-C))/(10sinAsinC)
=3(1+cosAcosC+sinAsinC)/(10sinAsinC)
=(5sinAsinC+3sinAsinC)/(10sinAsinC)
=8/10=4/5
得证
正弦定理,sinA+sinC=2sinB
和差化积,2sin(A+C)/2cos(A-C)/2=4sin(A+C)/2cos(A+C)/2
cos(A-C)/2=2cos(A+C)/2 ....1
两边平方,1+cos(A-C)=4+4cos(A+C)
展开,整理,5sinAsinC=3(1+cosAcosC)
再利用和差化积和1式
(cosA+cosC)/(1+cosAcosC)
=3(cosA+cosC)/(5sinAsinC)
=6cos(A+C)/2cos(A-C)/2/(5sinAsinC)
=3cos^2(A-C)/(5sinAsinC)
=3(1+cos(A-C))/(10sinAsinC)
=3(1+cosAcosC+sinAsinC)/(10sinAsinC)
=(5sinAsinC+3sinAsinC)/(10sinAsinC)
=8/10=4/5
得证
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询