如何证明两个集合相等?题目如下。

{x丨x=2m-1,m∈Z}与{x丨2n-1,n∈Z}{x丨x=2m-1,m∈Z}与{x丨4K±1,K∈Z}总共两道题,谢谢各位。... {x丨x=2m-1,m∈Z}与{x丨2n-1,n∈Z}
{x丨x=2m-1,m∈Z}与{x丨4K±1,K∈Z}
总共两道题,谢谢各位。
展开
百度网友3a56b80
2013-06-29 · 超过27用户采纳过TA的回答
知道答主
回答量:89
采纳率:0%
帮助的人:76.4万
展开全部
解:很简单,证明两个集合相等,只要证明两个集合包含的元素相同即可。
对于第一道题,这个{x丨x=2m-1,m∈Z}集合的元素是{...,-5,-3,-1,1,3,5,7...}

集合 {x丨2n-1,n∈Z}元素是{...,-5,-3,-1,1,3,5,7...},所以,第一道题的两个集合相等
对于第二道题,{x丨4K±1,K∈Z}集合所包含的原属是{...,-9,-7,-5,-3,-1,1,3,5,7,9....},所以第二道题的两个集合也相等。
百度网友9d59776
2013-06-29 · TA获得超过4.7万个赞
知道大有可为答主
回答量:2万
采纳率:72%
帮助的人:7852万
展开全部
证明:(1)若x∈A, 则x=2m-1,令m=n,∴x=2n-1,且m=n∈z∴x∈B
若x∈B,则x=2n-1. 令m=n ∴x=2m-1,且m=n∈z∴x∈A
∴A=B
(2)若x∈A,则x=2m-1,当m=2k时,x=4k-1且k∈z;当m=2k+1时,x=2(2k+1)-1=4k+1,k∈z.。∴x∈B
若x∈B,则x=4k±1.。当x=4k-1时,x=2(2k)-1,令m=2k∈z,有x=2m-1∈A;当x=4k+1=2(2k+1)-1,令m=2k+1∈z,有x=2m-1∈A
∴综上,A=B
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式