一质量为m的均质杆长为l,绕铅直轴oo'成θ角转动,其转动惯量为多少
4个回答
展开全部
1、积分法
其转动惯量为(∫m(rsinθ)dr)/L,r积分区间 [0,L]
积分区间不同,转动惯量不同,跟直轴和均质杆的交点有关。
2、悉宽质量投影法
把均质杆向直轴OO'垂直的坐标投影,得到一个长为:Lsinθ的均质杆,质量不变。
则借助常用均质闷轮杆的转动惯量公式:可得:J=m(Lsinθ)^2/12 (直轴与杆的交点在中点)。
直轴与杆的交点在距离中点距离:X 任一点.J=m(Lsinθ)^2/12 +m(xsinθ)^2。
扩展资料:
转动惯量的性质:
1、转轴、质量一定:转动惯量与刚体的形状即质量的分布有关。
2、形状、质量一定:转动惯量与转轴的位置有关。
3、形状、转轴一定:转动惯量与刚体的质量有关。
4、转动惯量具有可加性。
转动惯量的应用:
电磁系仪表的指示系统,因线圈的转动惯量不同,可分别用于测量微小电流(检流计)或电量(冲击电流计)。在发动机叶片、飞轮、陀螺以及人造卫星的外形设计上,精确地测定转动惯量,都是十分必要的。对于质量分布均匀,外形不复杂的物体可以从它的外形尺寸的质量分布用公式计蚂陆信算出相对于某一确定转轴的转动惯量。
展开全部
这么转,跟质量为m,长为lsinθ的均质杆在平面内转的转动惯量大小是一样的.
因为I=ΣΔm*r2 积分算的时候没有任何区别
平面内转的杆子岁态的转动惯量并银公式乎蔽源:(1/3)m*L2 (L为杆长) 积分很容易得到
因为I=ΣΔm*r2 积分算的时候没有任何区别
平面内转的杆子岁态的转动惯量并银公式乎蔽源:(1/3)m*L2 (L为杆长) 积分很容易得到
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-01-10
引用ken13145200的回答:
这么转,跟质量为m,长为lsinθ的均质杆在平面内转的转动惯量大小是一样的.
因为I=ΣΔm*r2 积分算的时候没有任何区别
平面内转的杆子的转动惯量公式:(1/3)m*L2 (L为杆长) 积分很容易得到
这么转,跟质量为m,长为lsinθ的均质杆在平面内转的转动惯量大小是一样的.
因为I=ΣΔm*r2 积分算的时候没有任何区别
平面内转的杆子的转动惯量公式:(1/3)m*L2 (L为杆长) 积分很容易得到
展开全部
(1/3)m*Lsinθ2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
m(Lcosθ)^2/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询