a1+a5=17+a4+a8=136+求an的通项公式
1个回答
展开全部
当是等差数列时,
a1+a5=17, 即 2a1+4d = 17
a4+a8=136, 即 2a1+10d = 136
联立解得 d = 119/6, a1 = -187/6
通项公式 an = a1+(n-1)d = [-187+119(n-1)]/6 = (119/6)n - 51.
当是等比数列时,
a1+a5=17, 即 a1(1+q^4) = 17
a4+a8=136, 即 a1q^3(1+q^4) = 136
联立解得 q = 2, a1 = 1
通项公式 an = a1q^(n-1) = 2^(n-1)
a1+a5=17, 即 2a1+4d = 17
a4+a8=136, 即 2a1+10d = 136
联立解得 d = 119/6, a1 = -187/6
通项公式 an = a1+(n-1)d = [-187+119(n-1)]/6 = (119/6)n - 51.
当是等比数列时,
a1+a5=17, 即 a1(1+q^4) = 17
a4+a8=136, 即 a1q^3(1+q^4) = 136
联立解得 q = 2, a1 = 1
通项公式 an = a1q^(n-1) = 2^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询