等差数列的和怎么求?
展开全部
等差数列求和的公式如下:
奇数项和:S奇 = [a + (a+2nd)](n+1)/2 = (a+nd)(n+1)
偶数项和:S偶 = [(a+d) + (a+2nd-d)]n/2 = (a+nd)n
扩展资料:
等差数列:
是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
等差中项:
等差中项即等差数列头尾两项的和的一半,但求等差中项不一定要知道头尾两项。等差数列中,等差中项一般设为A(r)。当A(m),A(r),A(n)成等差数列时,A(m)+A(n)=2×A(r),所以A(r)为A(m)、A(n)的等差中项,且为数列的平均数。并且可以推知n+m=2×r,且任意两项a(m)、a(n)的关系为:a(n)=a(m)+(n-m)*d,(类似p(n)=p(m)+(n-m)*b(1),相当容易证明,它可以看作等差数列广义的通项公式。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询