在三角形ABC中,若sinA=(sinB+sinC)/(cosB+cosC),则△ABC的形状为

290991678
2013-06-30 · TA获得超过1.8万个赞
知道大有可为答主
回答量:2129
采纳率:60%
帮助的人:1552万
展开全部
sinA=(sinB+sinC)/(cosB+cosC)
sin(B+C)=(sinB+sinC)/(cosB+cosC)
sinBcosC+cosBsinC=(sinB+sinC)/(cosB+cosC)
sinBcosBcosC+sinB(cosC)^2+(cosB)^2sinC+cosBsinCcosC=sinB+sinC
sinBcosBcosC+cosBsinCcosC=sinB-sinB(cosC)^2+sinC-(cosB)^2sinC
sinBcosBcosC+cosBsinCcosC=sinB(sinC)^2+(sinB)^2sinC
cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC)
(cosBcosC-sinBsinC)(sinB+sinC)=0
cos(B+C)(sinB+sinC)=0
sinB+sinC≠0
所以cos(B+C)=0
B+C=90度,直角三角形

很高兴为您解答,祝你学习进步!
【梦华幻斗】团队为您答题。有不明白的可以追问!
如果您认可我的回答。请点击下面的【选为满意回答】按钮,同时可以【赞同】一下,谢谢!
追问
谢谢,但是我第二部不懂为什么直接=sin(b+c)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式