已知函数f(x)=根号3/2sinwx-sin的平方wx/2+1/2(w>0)的最小正周期为π(1)求w的值及
已知函数f(x)=根号3/2sinwx-sin的平方wx/2+1/2(w>0)的最小正周期为π(1)求w的值及函数f(x)的单调递增区间(2)当x∈【0,π/2】时,求函...
已知函数f(x)=根号3/2sinwx-sin的平方wx/2+1/2(w>0)的最小正周期为π(1)求w的值及函数f(x)的单调递增区间
(2)当x∈【0,π/2】时,求函数f(x)的取值范围 展开
(2)当x∈【0,π/2】时,求函数f(x)的取值范围 展开
3个回答
展开全部
答:
(1)
f(x)=(√3/2)sinwx-sin²(wx/2)+1/2
=(√3/2)sinwx+(1/2)coswx
=sin(wx+π/6)
f(x)最小正周期T=2π/w=π,w=2
所以:f(x)=sin(2x+π/6)
f(x)单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2,kπ-π/3<=x<=kπ+π/6
所以:w=2,单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)0<=x<=π/2,π/6<=2x+π/6<=7π/6
-1/2<=sin(2x+π/6)<=1
所以:f(x)的取值范围是[-1/2,1]
(1)
f(x)=(√3/2)sinwx-sin²(wx/2)+1/2
=(√3/2)sinwx+(1/2)coswx
=sin(wx+π/6)
f(x)最小正周期T=2π/w=π,w=2
所以:f(x)=sin(2x+π/6)
f(x)单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2,kπ-π/3<=x<=kπ+π/6
所以:w=2,单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)0<=x<=π/2,π/6<=2x+π/6<=7π/6
-1/2<=sin(2x+π/6)<=1
所以:f(x)的取值范围是[-1/2,1]
展开全部
f(x)可化为f(x)=(1-cos2wx)/2+√3 sinwx coswx=-cos2wx/2+√3/2sin2wx+1/2利用化一公式可得上式=sin(2wx-π/6)+1/2,又根据题意有2π/2w=π,所以w=1.所以函数的递减区间为。π/2+2kπ<2x-π/6<3π/2+2kπ,解得其单调递减区间为(π/3+kπ,5π/3+kπ)。
(2)函数在区间上先递增后递减,由1的答案可知:函数在【0,π/3】上递增,在【π/3,2π/3】上递减,于是可以轻易的求得函数的值域为【0,3/2】
(2)函数在区间上先递增后递减,由1的答案可知:函数在【0,π/3】上递增,在【π/3,2π/3】上递减,于是可以轻易的求得函数的值域为【0,3/2】
追问
1/2应该消了吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
答:
(1)
f(x)=(√3/2)sinwx-sin²(wx/2)+1/2
=(√3/2)sinwx+(1/2)coswx
=sin(wx+π/6)
f(x)最小正周期T=2π/w=π,w=2
所以:f(x)=sin(2x+π/6)
f(x)单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2,kπ-π/3<=x<=kπ+π/6
所以:w=2,单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)0<=x<=π/2,π/6<=2x+π/6<=7π/6
-1/2<=sin(2x+π/6)<=1
所以:f(x)的取值范围是[-1/2,1]
(1)
f(x)=(√3/2)sinwx-sin²(wx/2)+1/2
=(√3/2)sinwx+(1/2)coswx
=sin(wx+π/6)
f(x)最小正周期T=2π/w=π,w=2
所以:f(x)=sin(2x+π/6)
f(x)单调递增区间满足:2kπ-π/2<=2x+π/6<=2kπ+π/2,kπ-π/3<=x<=kπ+π/6
所以:w=2,单调递增区间为[kπ-π/3,kπ+π/6],k∈Z
(2)0<=x<=π/2,π/6<=2x+π/6<=7π/6
-1/2<=sin(2x+π/6)<=1
所以:f(x)的取值范围是[-1/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询