一棵树的后根遍历与这棵树所对应的二叉树的中序遍历相同。
1个回答
展开全部
原话应该是这样的:一棵树的后根遍历与这棵树所对应的二叉树的中序遍历相同。因为树转化为二叉树后是没有右子树的,所以最后访问的是树的根结点。
先根遍历、中根遍历、后根遍历。
先序遍历、中序遍历、后序遍历。
是对同一种问题的两种说法。二叉树的先根遍历序列与其对应的二叉树的中序序列相同,仅有一种特例:即该二叉树的各结点仅有右子树,也就是一棵退化了的右偏的线性序列。
扩展资料:
与那些基本上都有标准遍历方式(通常是按线性顺序)的线性数据结构(如链表、一维数组)所不同的是,树结构有多种不同的遍历方式。从二叉树的根节点出发,节点的遍历分为三个主要步骤:对当前节点进行操作(称为“访问”节点)、遍历左边子节点、遍历右边子节点。这三个步骤的先后顺序也是不同遍历方式的根本区别。
由于从给定的某个节点出发,有多个可以前往的下一个节点(树不是线性数据结构),所以在顺序计算(即非并行计算)的情况下,只能推迟对某些节点的访问——即以某种方式保存起来以便稍后再访问。常见的做法是采用栈(LIFO)或队列(FIFO)。
参考资料:百度百科-遍历
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询