展开全部
解: X^3/根号下(1+x^2)的原函数=∫[x^3/(√1+x^2)]dx
=1/2∫[x^2/(√1+x^2)]d(x^2)
=1/2∫[(x^2+1-1)/(√1+x^2)]d(x^2)
=1/2∫(√1+x^2)d(x^2+1)-1/2∫[1/(√1+x^2)](d(x^2+1)
=1/2[(2/3)(x^2+1)^(3/2)-2(√1+x^2)]
=(x^2-2)(√1+x^2)/3
=1/2∫[x^2/(√1+x^2)]d(x^2)
=1/2∫[(x^2+1-1)/(√1+x^2)]d(x^2)
=1/2∫(√1+x^2)d(x^2+1)-1/2∫[1/(√1+x^2)](d(x^2+1)
=1/2[(2/3)(x^2+1)^(3/2)-2(√1+x^2)]
=(x^2-2)(√1+x^2)/3
追问
X^3怎么变成X^2了求教-。-
追答
因为d(x^2)=2xdx 所以x^3dx=(1/2)x^2d(x^2)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询