一元二次方程根的判别式怎么来的
高粉答主
2016-07-21 · 中小学教师,杨建朝,蒲城县教研室蒲城县教育学会、教育领域创作...
个人认证用户
关注
展开全部
根据一元二次方程的形式进行配方得来的,过程如下
ax^2+bx=-c
x^2+(b/a)x=-c/a
x^2+2*x*(b/2a)+(b/2a)^2=-c/a+(b/2a)^2
[x+(b/2a)]^2=(b^2-4ac)/(2a)^2
所以x+(b/2a)=±√(b^2-4ac)/(2a)
x=-(b/2a)±√(b^2-4ac)/(2a)
x=[-b±√(b^2-4ac)]/(2a)
ax^2+bx=-c
x^2+(b/a)x=-c/a
x^2+2*x*(b/2a)+(b/2a)^2=-c/a+(b/2a)^2
[x+(b/2a)]^2=(b^2-4ac)/(2a)^2
所以x+(b/2a)=±√(b^2-4ac)/(2a)
x=-(b/2a)±√(b^2-4ac)/(2a)
x=[-b±√(b^2-4ac)]/(2a)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
-b/2a±[根号下(b^2-4ac)]/2a
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |