初中数学几何综合题
如图,在RT△ABC中,∠ACB=90°,CD是BC边上的高.E为AC的中点,作EF⊥AC,垂足为E,与AB、CD分别交于点F、O.连接ED、CF.(1)求证:△OEC∽...
如图,在RT△ABC中,∠ACB=90°,CD是BC边上的高.E为AC的中点,作EF⊥AC,垂足为E,与AB、CD分别交于点F、O.连接ED、CF.
(1)求证:△OEC∽△CEF;
(2)求证:CO/CF=tan∠OFC;
(3)若∠A=60°,AD=2,求CO的长. 展开
(1)求证:△OEC∽△CEF;
(2)求证:CO/CF=tan∠OFC;
(3)若∠A=60°,AD=2,求CO的长. 展开
展开全部
(1)RT△ADC∽RT△OEC,则∠A=∠EOC 因为E为AC中点,且FE垂直AC
所以AF=CF(垂直平分线)所以∠A=∠ECF= ∠EOC 又因为∠OEC=∠CEF
所以△OEC∽△CEF
(2)因为△OEC∽△CEF,所以EC/EF=OC/CF 因为∠CEF为直角 所以EC/EF=tan∠OFC
所以CO/CF=tan∠OFC
(3)因为△AFC为等腰三角形,∠A=60°,所以△AFC为等边三角形
因为CD⊥AF 所以AD=DF=2=1/2CF,即AC=AF=CF=4 又因为EF⊥AC,所以∠OFC=1/2∠AFC=30° 因为 CO/CF=tan∠OFC【(2)已证明】
所以CO=tan∠OFC×CF=tan30×4=(4/3)√3 (三分之四倍根号三)
所以AF=CF(垂直平分线)所以∠A=∠ECF= ∠EOC 又因为∠OEC=∠CEF
所以△OEC∽△CEF
(2)因为△OEC∽△CEF,所以EC/EF=OC/CF 因为∠CEF为直角 所以EC/EF=tan∠OFC
所以CO/CF=tan∠OFC
(3)因为△AFC为等腰三角形,∠A=60°,所以△AFC为等边三角形
因为CD⊥AF 所以AD=DF=2=1/2CF,即AC=AF=CF=4 又因为EF⊥AC,所以∠OFC=1/2∠AFC=30° 因为 CO/CF=tan∠OFC【(2)已证明】
所以CO=tan∠OFC×CF=tan30×4=(4/3)√3 (三分之四倍根号三)
展开全部
证明:∵E为AC的中点,作EF⊥AC
∴△AFC中,AF=AC,∠A=∠ACF
∵∠A+∠ACD=∠ACD+COE=90°
∴∠COE=∠A=∠ACF
∵∠CEO=∠CEF=90°
∴△OEC∽△CEF
2.证明:∵ △OEC∽△CEF
∴∠OFC=∠ECO,EO/CE=CO/CF
∴tan∠OFC=tan∠ECO=EO/CE=CO/CF
3.∵在RT△ACD中,∠A=60°
∴AC=2AD=4,∠ACD=30°
∴CO=CE/cos∠ACD=AC/2cos∠ACD==4/2(根号3/2)=4根号3/3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)由题意,得 RT三角形ADC相似TR三角形OEC,则角A=角EOC
因为E为AC中点,且FE垂直AC 所以三角形ACF为等腰三角形 所以角A=角ECF
因为角A=角EOC 所以角EOC=角ECF 又因为角OEC=角CEF 所以RT三角形OEC相似RT三角CEF
(2)因为RT三角形OEC相似RT三角CEF 所以EC/EF=OC/CF
因为角CEF为直角,所以EC/EF=tan角OFC 所以OC/CF=tan角OFC
(3)因为三角形AFC为等腰三角形,角A=60度,所以三角形AFC为等边三角形
因为CD垂直AF 所以AD=DF=2=1/2CF,即AC=AF=CF=4 又因为FE垂直AC,所以角OFC=30度
所以CO=tan角OFC*CF=tan30*4=(4根号3)/3
因为E为AC中点,且FE垂直AC 所以三角形ACF为等腰三角形 所以角A=角ECF
因为角A=角EOC 所以角EOC=角ECF 又因为角OEC=角CEF 所以RT三角形OEC相似RT三角CEF
(2)因为RT三角形OEC相似RT三角CEF 所以EC/EF=OC/CF
因为角CEF为直角,所以EC/EF=tan角OFC 所以OC/CF=tan角OFC
(3)因为三角形AFC为等腰三角形,角A=60度,所以三角形AFC为等边三角形
因为CD垂直AF 所以AD=DF=2=1/2CF,即AC=AF=CF=4 又因为FE垂直AC,所以角OFC=30度
所以CO=tan角OFC*CF=tan30*4=(4根号3)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1:
∵EF⊥AC,∠ACB=90°
所以 ∠ACB=∠CEO=90°
∵∠ACD=∠ACD
所以 RT△ADC相似于TR△OEC
所以 ∠A=∠EOC
∵E为AC的中点(三线合一)
所以 △CAF是等腰三角形
所以 ∠A=∠ECF
所以 ∠ECF=∠CEO(条件一)
∵CD是BC边上的高
所以 ∠CEF=∠CDF=90°(条件二)
所以 △OEC∽△CEF
2:
∵ △OEC∽△CEF
所以 ∠ECO=∠CFE
∵tan∠ECO=EO/CE
tan∠OFC=CE/EF
所以 tan∠OFC= EO/CE
∵CO/EO=CF/AE
所以 OC/CF=tan角OFC
3:
∵∠A=60°,AD=2
所以 CA=2AD=4,CD=2根号3
∵E为AC的中点
所以 CE=2
∵△OEC∽△CEF
所以 2/2根号3=CO/4
所以 CO=(4根号3)/3
∵EF⊥AC,∠ACB=90°
所以 ∠ACB=∠CEO=90°
∵∠ACD=∠ACD
所以 RT△ADC相似于TR△OEC
所以 ∠A=∠EOC
∵E为AC的中点(三线合一)
所以 △CAF是等腰三角形
所以 ∠A=∠ECF
所以 ∠ECF=∠CEO(条件一)
∵CD是BC边上的高
所以 ∠CEF=∠CDF=90°(条件二)
所以 △OEC∽△CEF
2:
∵ △OEC∽△CEF
所以 ∠ECO=∠CFE
∵tan∠ECO=EO/CE
tan∠OFC=CE/EF
所以 tan∠OFC= EO/CE
∵CO/EO=CF/AE
所以 OC/CF=tan角OFC
3:
∵∠A=60°,AD=2
所以 CA=2AD=4,CD=2根号3
∵E为AC的中点
所以 CE=2
∵△OEC∽△CEF
所以 2/2根号3=CO/4
所以 CO=(4根号3)/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)∠acd+∠cad=∠acd+∠coe
所以∠cad=∠coe=∠acf
因为两个直角
所以oec相似cef
(2)tan∠ofc=tan∠oce=oe/ce=co/cf
(3)易证ae=ce=2 ∠acd=30度 设oe=x co=2x rt△coe中 x²+4=4x² x=2/3根号3
所以co=2x=三分之四根号3 4/3根号3
所以∠cad=∠coe=∠acf
因为两个直角
所以oec相似cef
(2)tan∠ofc=tan∠oce=oe/ce=co/cf
(3)易证ae=ce=2 ∠acd=30度 设oe=x co=2x rt△coe中 x²+4=4x² x=2/3根号3
所以co=2x=三分之四根号3 4/3根号3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询