设f(x)二阶连续可微,且使曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,求函数f(x)
2个回答
展开全部
曲线积分∫[f(x)+x]ydx+[f'(x)+sinx]dy与路径无关,那么:
{[f(x)+x]y}‘y=[f'(x)+sinx]'x
f''(x)+cosx=f(x)+x
f''(x)-f(x)=x-cosx
f''(x)-f(x)=0的通解f(x)=C1e^x+C2e^(-x)
设特解y=Ax+Bcosx
y'=A-Bsinx
y''=-Bcosx
-Bcosx-Ax-Bcosx=x-cosx
A=-1 B=1/2
f(x)=C1e^x+C2e^(-x)-x+(1/2)cosx
{[f(x)+x]y}‘y=[f'(x)+sinx]'x
f''(x)+cosx=f(x)+x
f''(x)-f(x)=x-cosx
f''(x)-f(x)=0的通解f(x)=C1e^x+C2e^(-x)
设特解y=Ax+Bcosx
y'=A-Bsinx
y''=-Bcosx
-Bcosx-Ax-Bcosx=x-cosx
A=-1 B=1/2
f(x)=C1e^x+C2e^(-x)-x+(1/2)cosx
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询