无穷级数的敛散性判别方法

 我来答
jinyunmm
2023-06-17 · TA获得超过2145个赞
知道大有可为答主
回答量:3834
采纳率:99%
帮助的人:194万
展开全部

无穷级数的敛散性判别方法有很多种,常见的有以下几种:

比较判别法:将给定级数与已知的收敛或发散的级数比较,根据比较结果作出结论。比值判别法:取级数的相邻两项的比值,当极限存在且小于1时,级数收敛;当极限大于1时,级数发散。

根值判别法:取级数的绝对值的第n项的n次方根,当极限存在且小于1时,级数收敛;当极限大于1时,级数发散。积分判别法:将级数中的每一项看成函数的值,在积分区间上进行定积分运算,若积分收敛,则级数收敛;若积分发散,则级数发散。

级数收敛的必要条件:若级数收敛,则其通项必须趋于0。交错级数的判别法:交错级数是指相邻项符号不同的级数。若其通项趋于0且满足Leibniz条件,则交错级数收敛。绝对收敛与条件收敛:若级数的绝对值收敛,则称该级数绝对收敛;若级数收敛但绝对值发散,则称该级数条件收敛。

特殊级数的收敛性:例如p级数、调和级数、幂级数等级数有其特别的判别方法,需要根据具体情况进行分析。以上是无穷级数的敛散性判别方法的常见方式,不同的方法适用于不同的级数,需要结合具体情况进行选择和应用。

无穷级数敛散性判断是在数学中常见的一个概念,它用于判定一个给定的无穷级数是否收敛或散开。数学是人类对事物的抽象结构与模式进行严格描述、推导的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

北京埃德思远电气技术咨询有限公司
2021-11-22 广告
假设条件在短路的实际计算中, 为了能在准确范围内迅速地计算短路电流, 通常采取以下简化假设。(1)不考虑发电机的摇摆现象。(2)不考虑磁路饱和,认为短路回路各元件的电抗为常数。(3)不考虑线路对地电容, 变压器的磁支路和高压电网中的电阻, ... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式