展开全部
(1)原式=lim(n→∞)√n*(n+1-n)/(√(n+1)+√n)
=lim(n→∞)√n/(√(n+1)+√n)
=lim(n→∞)1/(√(1+1/n)+1)
=1/(1+1)
=1/2
(2)原式=lim(n→∞)((1-4/n)^3+1)/(1+5/n^2+6/n^3) (上下同时除以n^3)
=(1+1)/(1+0+0)
=2
(3)当n>3时,因为0<|3^n/n!|=|3/1*3/2*3/3*3/4*...*3/n|<|9/2*3/n|=27/(2n)→0
所以原式=0
(4)令a=(1+√5)/2,b=(1-√5)/2
则|a|>|b|
所以原式=lim(n→∞)(a^(n+1)+b^(n+1))/(a^n+b^n)
=lim(n→∞)(a+b*(b/a)^n)/(1+(b/a)^n)
=(a+b*0)/(1+0)
=a
=(1+√5)/2
=lim(n→∞)√n/(√(n+1)+√n)
=lim(n→∞)1/(√(1+1/n)+1)
=1/(1+1)
=1/2
(2)原式=lim(n→∞)((1-4/n)^3+1)/(1+5/n^2+6/n^3) (上下同时除以n^3)
=(1+1)/(1+0+0)
=2
(3)当n>3时,因为0<|3^n/n!|=|3/1*3/2*3/3*3/4*...*3/n|<|9/2*3/n|=27/(2n)→0
所以原式=0
(4)令a=(1+√5)/2,b=(1-√5)/2
则|a|>|b|
所以原式=lim(n→∞)(a^(n+1)+b^(n+1))/(a^n+b^n)
=lim(n→∞)(a+b*(b/a)^n)/(1+(b/a)^n)
=(a+b*0)/(1+0)
=a
=(1+√5)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询