对数的运算法则及公式是什么
1个回答
展开全部
对数的运算法则及公式是:loga(MN)=logaM+logaN;loga(M/N)=logaM-logaN;logaNnx=nlogaM。如果a=em,则m为数a的自然对数,即lna=m,e=2.718281828?为自然对数的底,其为无限不循环小数。定义:若an=b(a>0,a≠1)则n=logab。
自然对数的运算法则及公式是:loga(MN)=logaM+logaN;loga(M/N)=logaM-logaN;对logaM中M的n次方有=nlogaM;如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828?为自然对数的底。
e是“指数”(exponential)的首字母,也是欧拉名字的首字母。和圆周率π及虚数单位i一样,e是最重要的数学常数之一。第一次把e看成常数的是雅各布_伯努利,他尝试计算lim(1+1/n)n的值,1727年欧拉首次用小写字母“e”表示这常数,此后遂成标准。
自然对数的底e是一个令人不可思议的常数,一个由lim(1+1/n)^n定义出的常数,居然在数学和物理中频频出现,简直可以说是无处不在。这实在是让我们不得不敬畏这神奇的数学世界。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询