已知三角形abc分别是三角形三个内角ABC的对边,acosC+根号3asinC-b-c=0,求A
3个回答
展开全部
acosC+√3asinB-b-c=0
利用正弦定理 a/sinA=b/sinB=c/sinC
sinAcosC+√3sinAsinC-sinB-sinC=0
∵ sinB=sin(A+C),
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC=sinC+cosAsinC
√3sinA=1+cosA
2√3sin(A/2)cos(A/2)=2cos²(A/2)
√3tan(A/2)=1
tan(A/2)=√3/3
∵0<A/2<π/2
∴ A/2=π/6
∴ A=π/3
利用正弦定理 a/sinA=b/sinB=c/sinC
sinAcosC+√3sinAsinC-sinB-sinC=0
∵ sinB=sin(A+C),
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC=sinC+cosAsinC
√3sinA=1+cosA
2√3sin(A/2)cos(A/2)=2cos²(A/2)
√3tan(A/2)=1
tan(A/2)=√3/3
∵0<A/2<π/2
∴ A/2=π/6
∴ A=π/3
2013-07-03
展开全部
一问:sinAcosC+√3sinAsinC-sinB-sinC=0
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
√3sinA=1+cosA
因tan(A/2)=(sinA)/(1+cosA)=√3/3
得:A/2=30°,即A=60°
sinAcosC+√3sinAsinC-sin(A+C)-sinC=0
sinAcosC+√3sinAsinC-sinAcosC-cosAsinC-sinC=0
√3sinAsinC-cosAsinC-sinC=0
√3sinA=1+cosA
因tan(A/2)=(sinA)/(1+cosA)=√3/3
得:A/2=30°,即A=60°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-03-01
展开全部
sfsfsfsfss
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询