2个回答
展开全部
设{(2n-1)/2^n}的前n项和为Sn.
Sn=1/2+3/2^2+5/2^3+…+(2n-1)/2^n (1)
(1/2)*(1)得:(1/2)Sn=1/2^2+3/2^3+5/2^4+…+(2n-1)/2^(n+1) (2)
(1)-(2)得:(1/2)Sn=1/2+1/2^2+1/2^3+…+1/2^n-(2n-1)/2^(n+1)
=(1/2)(1-1/2^n)/(1-1/2)-(2n-1)/2^(n+1)
=1-2/2^(n+1)-(2n-1)/2^(n+1)
=1-(2n+1)/2^(n+1)
Sn=2-(2n+1)/2^n,n为正整数
Sn=1/2+3/2^2+5/2^3+…+(2n-1)/2^n (1)
(1/2)*(1)得:(1/2)Sn=1/2^2+3/2^3+5/2^4+…+(2n-1)/2^(n+1) (2)
(1)-(2)得:(1/2)Sn=1/2+1/2^2+1/2^3+…+1/2^n-(2n-1)/2^(n+1)
=(1/2)(1-1/2^n)/(1-1/2)-(2n-1)/2^(n+1)
=1-2/2^(n+1)-(2n-1)/2^(n+1)
=1-(2n+1)/2^(n+1)
Sn=2-(2n+1)/2^n,n为正整数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询