请在这里概已知数列{an}中a1=3,a2=5,其前n项和满足:Sn+Sn-2=2Sn-1+2n-1(n≥3). (1)试求数列{an}
(1)解:由Sn+Sn-2=2Sn-1+2n-1(n≥3)得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),∴an=an-1+2n-1∴an=(an-an-1)+...
(1)解:由Sn+Sn-2=2Sn-1+2n-1(n≥3)得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∴an=an-1+2n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1;
(2)证明:∵bn=
2n-1an•an+1
=
12
(
12n+1
-
12n+1+1
),
∴Tn=b1+b2+…+bn=
12
[(
13
-
15
)+(
15
-
19
)+…+(
12n+1
-
12n+1+1
)]=
12
(
13
-
12n+1+1
)<
16
(3)证明:由(2)可知Tn=
12
(
13
-
12n+1+1
),
若Tn>m,则得
12
(
13
-
12n+1+1
)>m,化简得
1-6m3
>
12n+1+1
.
∵m∈(0,
16
),∴1-6m>0,∴2n+1>
31-6m
-1,∴n>log2(
31-6m
-1)-1,
当log2(
31-6m
-1)-1<1,即0<m<
115
时,取n0=1即可,
当log2(
31-6m
-1)-1≥1,即
115
≤m<
16
时,则记log2(
31-6m
-1)-1的整数部 展开
∴an=an-1+2n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1;
(2)证明:∵bn=
2n-1an•an+1
=
12
(
12n+1
-
12n+1+1
),
∴Tn=b1+b2+…+bn=
12
[(
13
-
15
)+(
15
-
19
)+…+(
12n+1
-
12n+1+1
)]=
12
(
13
-
12n+1+1
)<
16
(3)证明:由(2)可知Tn=
12
(
13
-
12n+1+1
),
若Tn>m,则得
12
(
13
-
12n+1+1
)>m,化简得
1-6m3
>
12n+1+1
.
∵m∈(0,
16
),∴1-6m>0,∴2n+1>
31-6m
-1,∴n>log2(
31-6m
-1)-1,
当log2(
31-6m
-1)-1<1,即0<m<
115
时,取n0=1即可,
当log2(
31-6m
-1)-1≥1,即
115
≤m<
16
时,则记log2(
31-6m
-1)-1的整数部 展开
1个回答
展开全部
a1=3,a2=5 =>S1=3, S2=8
Sn+S(n-2)=2S(n-1)+2n-1 ;(n≥3)
[Sn-S(n-1)] -[ S(n-1) -S(n-2)] =2n-1
[Sn-S(n-1)] - [S2-S1] = 5+7+...+(2n-1)
[Sn-S(n-1)] - 5 = 5+7+...+(2n-1)
Sn-S(n-1) = n^2+1
an= n^2+1
an = 3 ; n=1
= n^2+1 ; n≥2
Sn+S(n-2)=2S(n-1)+2n-1 ;(n≥3)
[Sn-S(n-1)] -[ S(n-1) -S(n-2)] =2n-1
[Sn-S(n-1)] - [S2-S1] = 5+7+...+(2n-1)
[Sn-S(n-1)] - 5 = 5+7+...+(2n-1)
Sn-S(n-1) = n^2+1
an= n^2+1
an = 3 ; n=1
= n^2+1 ; n≥2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询