已知函数f(x)=x/lnx - ax(a∈R)(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值(2)若函数f(X)在其定

已知函数f(x)=x/lnx-ax(a∈R)(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值(2)若函数f(X)在其定义域上位减函数,求a的范围,(3)若... 已知函数f(x)=x/lnx - ax(a∈R)
(1)若实数a=0,求函数f(x)在区间(1.正无穷)上的最小值
(2)若函数f(X)在其定义域上位减函数,求a的范围,
(3)若特定x1,x2∈[e,e^2],使f(x1)≤f(x2)+a成立,求a的范围
展开
俺知道oo
2013-07-03 · TA获得超过2352个赞
知道小有建树答主
回答量:965
采纳率:0%
帮助的人:600万
展开全部
(1) a=0时,f(x)=x/lnx ,令f'(x)=(lnx-1)/(lnx)²=0,得 x=e
x∈(1,e)时,f'(x)<0,f(x)单调减;x∈(e,+∞)时,f'(x)>0,f(x)单调增,
所以,函数f(x)在区间(1,+∞)上的最小值为 f(e)=e
(2)由题意,当x>0时, f'(x)=(lnx-1)/(lnx)²-a=(-aln²x+lnx-1)/ln²x≤0恒成立,
即-aln²x+lnx-1≤0恒成立,
即 a≥(lnx-1)/ln²x=-(1/lnx-1/2)²+1/4恒成立,
所以,a≥1/4
(3)"特定x1,x2∈[e,e^2]"是什么意思?
billy333323
2013-07-03 · 超过11用户采纳过TA的回答
知道答主
回答量:53
采纳率:0%
帮助的人:31.1万
展开全部
1.f(e)=e
2.a>=1/4
3. 1/4 <=a<=1/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式