高数,双纽线面积,我没看懂,用极坐标怎么求?想看详细的积分公式。
4个回答
展开全部
注意极坐标面积微元:1/2r^2d\theta,具体过程如下图:
在平面内取一个定点O,叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。
对于平面内任何一点M,用ρ表示线段OM的长度(有时也用r表示),θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。通常情况下,M的极径坐标单位为1(长度单位),极角坐标单位为rad(或°)。
扩展资料:
曲面面积(area of a surface)是指曲面表面的面积。把光滑曲面S分成没有公共内点的n块S1,... , Sn,且每一块仍是光滑曲面,在每个S上取一点P,过P作S的切平面T,将s投影到T上,所有这些投影的面积之和的极限。
当所有S的直径趋于零时,如果存在,就是曲面S的面积,对有界简单光滑曲面而言,这样的极限总是存在的,而且与曲面的光滑等价的参数表示的选择无关。
参考资料:百度百科——曲面面积
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询