数学题求解 如图
2013-07-03
展开全部
证明:如图,连接BD、AE,
∵DA⊥AB,FC⊥AB,
∴AD∥CF,∠DAB=∠BCF=90°,
又∵DA=BC,FC=AB,
∴△DAB≌△BCF(SAS),
∴BD=BF,
∴∠BDF=∠BFD,
又∵AD∥CF,
∴∠ADF=∠CFD,
∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,
同理可得,∠BAF=∠AFC+2∠CFE,
又∵∠AFB=51°,
∴∠ABF+∠BAF=129°,
∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,
∴∠DFE=39°.
答:∠DFE度数是39°.
∵DA⊥AB,FC⊥AB,
∴AD∥CF,∠DAB=∠BCF=90°,
又∵DA=BC,FC=AB,
∴△DAB≌△BCF(SAS),
∴BD=BF,
∴∠BDF=∠BFD,
又∵AD∥CF,
∴∠ADF=∠CFD,
∴∠ABF=∠DFB+∠ADF=∠BFC+2∠CFD,
同理可得,∠BAF=∠AFC+2∠CFE,
又∵∠AFB=51°,
∴∠ABF+∠BAF=129°,
∴∠BFC+2∠CFD+∠AFC+2∠CFE=51°+2∠DFE=129°,
∴∠DFE=39°.
答:∠DFE度数是39°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询