已知z=f(x+y²,x+2y),其中f具有二阶连续偏导数,求偏z/偏x偏y
展开全部
对方程
z = f(y/x,x+2y)
的两端求微分,得
dz = f1*[(xdy-ydx)/x²]+f2*(dx+2dy)
= [-(y/x²)f1+f2]dx+[(1/x)f1+2*f2]dy,
得到
Dz/Dx = -(y/x²)f1+f2,Dz/Dy = (1/x)f1+2*f2,
于是
D²z/DxDy = (D/Dx)(Dz/Dy)
= (D/Dx)[(1/x)f1+2*f2]
= [(-1/x²)*f1+(1/x)*[-(y/x²)f11+f12]+2*[(1/x)f21+2*f22]
z = f(y/x,x+2y)
的两端求微分,得
dz = f1*[(xdy-ydx)/x²]+f2*(dx+2dy)
= [-(y/x²)f1+f2]dx+[(1/x)f1+2*f2]dy,
得到
Dz/Dx = -(y/x²)f1+f2,Dz/Dy = (1/x)f1+2*f2,
于是
D²z/DxDy = (D/Dx)(Dz/Dy)
= (D/Dx)[(1/x)f1+2*f2]
= [(-1/x²)*f1+(1/x)*[-(y/x²)f11+f12]+2*[(1/x)f21+2*f22]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询