进制转换练习题的具体方法是?
进制转换练习题1、十进制算术表达式:3*512+7*64+4*8+5的运算结果,用二进制表示为().A.10111100101B.11111100101C.1111010...
进制转换练习题1、十进制算术表达式:3*512+7*64+4*8+5的运算结果,用二进制表示为().
A. 10111100101 B.11111100101 C. 11110100101 D.11111101101 111111001012、与二进制数101.01011等值的十六进制数为( )A)A.B B)5.51 C)A.51 D)5.583、十进制数2004等值于八进制数( )。 A. 3077 B. 3724 C. 2766 D. 4002 E. 3755 4、(2004)10 + (32)16的结果是( )。A. (2036)10 B. (2054)16 C. (4006)10 D. (100000000110)2 E. (2036)165、十进制数2006等值于十六制数为( )A、7D6 B、6D7 C、3726 D、6273 E、71366、十进制数2003等值于二进制数( )。 A)11111010011 B)10000011 C)110000111 D)010000011l E)1111010011 就是做上述的题的方法,各类进制的转换,谢谢!!! 展开
A. 10111100101 B.11111100101 C. 11110100101 D.11111101101 111111001012、与二进制数101.01011等值的十六进制数为( )A)A.B B)5.51 C)A.51 D)5.583、十进制数2004等值于八进制数( )。 A. 3077 B. 3724 C. 2766 D. 4002 E. 3755 4、(2004)10 + (32)16的结果是( )。A. (2036)10 B. (2054)16 C. (4006)10 D. (100000000110)2 E. (2036)165、十进制数2006等值于十六制数为( )A、7D6 B、6D7 C、3726 D、6273 E、71366、十进制数2003等值于二进制数( )。 A)11111010011 B)10000011 C)110000111 D)010000011l E)1111010011 就是做上述的题的方法,各类进制的转换,谢谢!!! 展开
2013-07-05
展开全部
1. 十 -----> 二
(25.625)(十)
整数部分:
25/2=12......1
12/2=6 ......0
6/2=3 ......0
3/2=1 ......1
1/2=0 ......1
然后我们将余数按从下往上的顺序书写就是:11001,那么这个11001就是十进制25的二进制形式
小数部分:
0.625*2=1.25
0.25 *2=0.5
0.5 *2=1.0
然后我们将整数部分按从上往下的顺序书写就是:101,那么这个101就是十进制0.625的二进制形式
所以:(25.625)(十)=(11001.101)(二)
十进制转成二进制是这样:
把这个十进制数做二的整除运算,并将所得到的余数倒过来.
例如将十进制的10转为二进制是这样:
(1) 10/2,商5余0;
(2) 5/2,商2余1;
(3)2/2,商1余0;
(4)1/2,商0余1.
(5)将所得的余数侄倒过来,就是1010,所以十进制的10转化为二进制就是1010
2. 二 ----> 十
(11001.101)(二)
整数部分: 下面的出现的2(x)表示的是2的x次方的意思
1*2(4)+1*2(3)+0*2(2)+0*2(1)+1*2(0)=25
小数部分:
1*2(-1)+0*2(-2)+1*2(-3)=0.625
所以:(11001.101)(二)=(25.625)(十)
二进制转化为十进制是这样的:
这里可以用8421码的方法.这个方法是将你所要转化的二进制从右向左数,从0开始数(这个数我们叫N),在位数是1的地方停下,并将1乘以2的N次方,最后将这些1乘以2的N次方相加,就是这个二进数的十进制了.
还是举个例子吧:
求110101的十进制数.从右向左开始了
(1) 1乘以2的0次方,等于1;
(2) 1乘以2的2次方,等于4;
(3) 1乘以2的4次方,等于16;
(4) 1乘以2的5次方,等于32;
(5) 将这些结果相加:1+4+16+32=53
3. 十 ----> 八
(25.625)(十)
整数部分:
25/8=3......1
3/8 =0......3
然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式
小数部分:
0.625*8=5
然后我们将整数部分按从上往下的顺序书写就是:5,那么这个0.5就是十进制0.625的八进制形式
所以:(25.625)(十)=(31.5)(八)
4. 八 ----> 十
(31.5)(八)
整数部分:
3*8(1)+1*8(0)=25
小数部分:
5*8(-1)=0.625
所以(31.5)(八)=(25.625)(十)
5. 十 ----> 十六
(25.625)(十)
整数部分:
25/16=1......9
1/16 =0......1
然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式
小数部分:
0.625*16=10(即十六进制的A或a)
然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式
所以:(25.625)(十)=(19.A)(十六)
6. 十六----> 十
(19.A)(十六)
整数部分:
1*16(1)+9*16(0)=25
小数部分:
10*16(-1)=0.625
所以(19.A)(十六)=(25.625)(十)
如何将带小数的二进制与八进制、十六进制数之间的转化问题
我们以(11001.101)(二)为例讲解一下进制之间的转化问题
说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看
1. 二 ----> 八
(11001.101)(二)
整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
001=1
011=3
然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式
小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
101=5
然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式
所以:(11001.101)(二)=(31.5)(八)
2. 八 ----> 二
(31.5)(八)
整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
1---->1---->001
3---->11
然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式
说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了!
小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
5---->101
然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式
所以:(31.5)(八)=(11001.101)(二)
3. 十六 ----> 二
(19.A)(十六)
整数部分:从后往前每位按十进制转换成四位二进制数,缺位处用0补充 则有:
9---->1001
1---->0001(相当于1)
则结果为00011001或者11001
小数部分:从前往后每位按十进制转换成四位二进制数,缺位处用0补充 则有:
A(即10)---->1010
所以:(19.A)(十六)=(11001.1010)(二)=(11001.101)(二)
4. 二 ----> 十六
(11001.101)(二)
整数部分:从后往前每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
1001---->9
0001---->1
则结果为19
小数部分:从前往后每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
1010---->10---->A
则结果为A
所以:(11001.101)(二)=(19.A)(十六)
(25.625)(十)
整数部分:
25/2=12......1
12/2=6 ......0
6/2=3 ......0
3/2=1 ......1
1/2=0 ......1
然后我们将余数按从下往上的顺序书写就是:11001,那么这个11001就是十进制25的二进制形式
小数部分:
0.625*2=1.25
0.25 *2=0.5
0.5 *2=1.0
然后我们将整数部分按从上往下的顺序书写就是:101,那么这个101就是十进制0.625的二进制形式
所以:(25.625)(十)=(11001.101)(二)
十进制转成二进制是这样:
把这个十进制数做二的整除运算,并将所得到的余数倒过来.
例如将十进制的10转为二进制是这样:
(1) 10/2,商5余0;
(2) 5/2,商2余1;
(3)2/2,商1余0;
(4)1/2,商0余1.
(5)将所得的余数侄倒过来,就是1010,所以十进制的10转化为二进制就是1010
2. 二 ----> 十
(11001.101)(二)
整数部分: 下面的出现的2(x)表示的是2的x次方的意思
1*2(4)+1*2(3)+0*2(2)+0*2(1)+1*2(0)=25
小数部分:
1*2(-1)+0*2(-2)+1*2(-3)=0.625
所以:(11001.101)(二)=(25.625)(十)
二进制转化为十进制是这样的:
这里可以用8421码的方法.这个方法是将你所要转化的二进制从右向左数,从0开始数(这个数我们叫N),在位数是1的地方停下,并将1乘以2的N次方,最后将这些1乘以2的N次方相加,就是这个二进数的十进制了.
还是举个例子吧:
求110101的十进制数.从右向左开始了
(1) 1乘以2的0次方,等于1;
(2) 1乘以2的2次方,等于4;
(3) 1乘以2的4次方,等于16;
(4) 1乘以2的5次方,等于32;
(5) 将这些结果相加:1+4+16+32=53
3. 十 ----> 八
(25.625)(十)
整数部分:
25/8=3......1
3/8 =0......3
然后我们将余数按从下往上的顺序书写就是:31,那么这个31就是十进制25的八进制形式
小数部分:
0.625*8=5
然后我们将整数部分按从上往下的顺序书写就是:5,那么这个0.5就是十进制0.625的八进制形式
所以:(25.625)(十)=(31.5)(八)
4. 八 ----> 十
(31.5)(八)
整数部分:
3*8(1)+1*8(0)=25
小数部分:
5*8(-1)=0.625
所以(31.5)(八)=(25.625)(十)
5. 十 ----> 十六
(25.625)(十)
整数部分:
25/16=1......9
1/16 =0......1
然后我们将余数按从下往上的顺序书写就是:19,那么这个19就是十进制25的十六进制形式
小数部分:
0.625*16=10(即十六进制的A或a)
然后我们将整数部分按从上往下的顺序书写就是:A,那么这个A就是十进制0.625的十六进制形式
所以:(25.625)(十)=(19.A)(十六)
6. 十六----> 十
(19.A)(十六)
整数部分:
1*16(1)+9*16(0)=25
小数部分:
10*16(-1)=0.625
所以(19.A)(十六)=(25.625)(十)
如何将带小数的二进制与八进制、十六进制数之间的转化问题
我们以(11001.101)(二)为例讲解一下进制之间的转化问题
说明:小数部份的转化计算机二级是不考的,有兴趣的人可以看一看
1. 二 ----> 八
(11001.101)(二)
整数部分: 从后往前每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
001=1
011=3
然后我们将结果按从下往上的顺序书写就是:31,那么这个31就是二进制11001的八进制形式
小数部分: 从前往后每三位一组,缺位处用0填补,然后按十进制方法进行转化, 则有:
101=5
然后我们将结果部分按从上往下的顺序书写就是:5,那么这个5就是二进制0.101的八进制形式
所以:(11001.101)(二)=(31.5)(八)
2. 八 ----> 二
(31.5)(八)
整数部分:从后往前每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
1---->1---->001
3---->11
然后我们将结果按从下往上的顺序书写就是:11001,那么这个11001就是八进制31的二进制形式
说明,关于十进制的转化方式我这里就不再说了,上一篇文章我已经讲解了!
小数部分:从前往后每一位按十进制转化方式转化为三位二进制数,缺位处用0补充 则有:
5---->101
然后我们将结果按从下往上的顺序书写就是:101,那么这个101就是八进制5的二进制形式
所以:(31.5)(八)=(11001.101)(二)
3. 十六 ----> 二
(19.A)(十六)
整数部分:从后往前每位按十进制转换成四位二进制数,缺位处用0补充 则有:
9---->1001
1---->0001(相当于1)
则结果为00011001或者11001
小数部分:从前往后每位按十进制转换成四位二进制数,缺位处用0补充 则有:
A(即10)---->1010
所以:(19.A)(十六)=(11001.1010)(二)=(11001.101)(二)
4. 二 ----> 十六
(11001.101)(二)
整数部分:从后往前每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
1001---->9
0001---->1
则结果为19
小数部分:从前往后每四位按十进制转化方式转化为一位数,缺位处用0补充 则有:
1010---->10---->A
则结果为A
所以:(11001.101)(二)=(19.A)(十六)
2013-07-05
展开全部
十进制转R(二、八、十六)进制:整数部分除以R,除到余数小于R为止,把余数顺序记下,小数部分乘以R,记下其整数部分,直到到结果的小数为0为止。整数部分逆序取余数,小数部分顺序取整。十六进制和八进制与二进制的互换:四位二进制表示一位十六进制数,三为二进制数表示一位八进制数。有一个表,十六进制和八进制与二进制对应的值,你自己记住就行了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询