第六题怎么做,谢谢
1个回答
展开全部
∫(0->π/2) e^(2x). cosx dx
=∫(0->π/2) e^(2x) dsinx
= [ sinx .e^(2x) ]|(0->π/2) - 2∫(0->π/2) e^(2x) .sinx dx
=e^π + 2∫(0->π/2) e^(2x) dcosx
=e^π + 2[cosx.e^(2x)]|(0->π/2) -4∫(0->π/2) e^(2x) .cosx dx
=e^π - 2 -4∫(0->π/2) e^(2x) .cosx dx
5∫(0->π/2) e^(2x). cosx dx = e^π -2
∫(0->π/2) e^(2x). cosx dx = (1/5)( e^π - 2)
=∫(0->π/2) e^(2x) dsinx
= [ sinx .e^(2x) ]|(0->π/2) - 2∫(0->π/2) e^(2x) .sinx dx
=e^π + 2∫(0->π/2) e^(2x) dcosx
=e^π + 2[cosx.e^(2x)]|(0->π/2) -4∫(0->π/2) e^(2x) .cosx dx
=e^π - 2 -4∫(0->π/2) e^(2x) .cosx dx
5∫(0->π/2) e^(2x). cosx dx = e^π -2
∫(0->π/2) e^(2x). cosx dx = (1/5)( e^π - 2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询