求广义积分 ∫(上限+∞,下限-∞) (xdx)/(1+x²)

 我来答
茹翊神谕者

2023-08-19 · 奇文共欣赏,疑义相与析。
茹翊神谕者
采纳数:3365 获赞数:25161

向TA提问 私信TA
展开全部

该积分发散,

因为∫(0,+∞)xdx/1+x^2=+∞

张爱文s
2017-03-09 · TA获得超过185个赞
知道答主
回答量:326
采纳率:0%
帮助的人:18.4万
展开全部
解: ∫[-∞:+∞]xdx/(1+x²) =½∫[-∞:+∞]d(1+x²)/(1+x²) =½ln(1+x²)|[-∞:+∞] =0 解二: 积区间[-∞:+∞]关于原点称 令f(x)=x/(1+x²) f(-x)=-x/[1+(-x)²]=-x/(1+x²)=-f(x) 函数奇函数定积结必偶函数 ∫[-∞:+∞]xdx/(1+x²)=
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
独角兽十三
2018-03-27
知道答主
回答量:1
采纳率:0%
帮助的人:875
展开全部
这个积分是积分区间(-∞→+∞)的反常积分,要求fx在(0→+∞)和(-∞→0)上均收敛时,原积分才收敛,很明显∫(0→A
)x/(1+x²)=1/2ln(1+A²)当A趋近于正无穷时极限不存在,于是原极限不存在,是发散的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式