线性代数矩阵A与A的逆矩阵相乘等于1吗
2个回答
展开全部
线性代数矩阵A与A的逆矩阵相乘等于E,不是1。若A可逆,即有A-1,使得AA-1=E,故:|A|·|A-1|=|E|=1。
逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆,矩阵可逆当且仅当它是满秩矩阵。
扩展资料:
矩阵乘法:
1、当矩阵A的列数(column)等于矩阵B的行数(row)时,A与B可以相乘。
2、矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。
3、乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。
参考资料来源:百度百科-逆矩阵
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
2017-01-11
展开全部
矩阵A与A的逆矩阵相乘,结果是单位矩阵E,单位矩阵E也就是和矩阵A(其实必须是方阵)同型的,只有主对角线上的数字是1,其他地方都是0的方阵。
矩阵A与A的逆矩阵相乘,不可能得到数字1这个结果的。
矩阵A与A的逆矩阵相乘,不可能得到数字1这个结果的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询