1个回答
展开全部
已知f(x)=sin2x+2; g(x)=f(x+π)+2(√3)cos²x-√3; ①.若角θ满足tanθ+(1/tanθ)=3,求f(θ);
②.若圆心角为θ,半径为2的扇形的弧长为L,且g(θ)=2, θ∈(0,π),求L;
解:①。tanθ+(1/tanθ)=(1+tan²θ)/tanθ=sec²θ/tanθ=(1/cos²θ)×(cosθ/sinθ)
=1/sinθcosθ=2/sin2θ=3,∴sin2θ=2/3;于是f(θ)=sin2θ+2=(2/3)+2=8/3;
②。g(x)=f(x+π)+2(√3)cos²x-√3=sin[2(x+π)]+2+2(√3)(1+cos2x)/2-√3
=sin2x+2+(√3)cos2x=2[sin2xcos(π/3)+cos2xsin(π/3)]+2=2sin(2x+π/3)+2;
g(θ)=2sin(2θ+π/3)+2=2,∴sin(2θ+π/3)=0,θ∈(0,π),故2θ+π/3=π,θ=π/3;
∴弧长L=2θ=(2/3)π.
②.若圆心角为θ,半径为2的扇形的弧长为L,且g(θ)=2, θ∈(0,π),求L;
解:①。tanθ+(1/tanθ)=(1+tan²θ)/tanθ=sec²θ/tanθ=(1/cos²θ)×(cosθ/sinθ)
=1/sinθcosθ=2/sin2θ=3,∴sin2θ=2/3;于是f(θ)=sin2θ+2=(2/3)+2=8/3;
②。g(x)=f(x+π)+2(√3)cos²x-√3=sin[2(x+π)]+2+2(√3)(1+cos2x)/2-√3
=sin2x+2+(√3)cos2x=2[sin2xcos(π/3)+cos2xsin(π/3)]+2=2sin(2x+π/3)+2;
g(θ)=2sin(2θ+π/3)+2=2,∴sin(2θ+π/3)=0,θ∈(0,π),故2θ+π/3=π,θ=π/3;
∴弧长L=2θ=(2/3)π.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询