容易高数 请问解法2第二行划线那一步是怎么由上一

 我来答
匿名用户
2017-10-26
展开全部
p(x)是f'(x)的k-1重因式且p(x)|f(x),
设f(x)=[p(x)]^n*g(x),其中n∈N+,f(x),g(x),p(x)都是多项式,p(x)与g(x)互质,[注]则
f'(x)=n[p(x)]^(n-1)*g(x)+[p(x)]^n*g'(x)
=[p(x)]^(n-1)[ng(x)+p(x)g'(x)],
p(x)与ng(x)+p(x)g'(x)互质,
∴[p(x)]^(k-1)|[p(x)]^(n-1),
∴k<=n.
[注}p(x)与g(x)互质未必成立,故命题未必成立。
宜把p(x)改为x-a.
昨天刚下的帝国
2017-10-26 · TA获得超过1.7万个赞
知道大有可为答主
回答量:3215
采纳率:87%
帮助的人:1616万
展开全部
请题主贴图
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式