1个回答
展开全部
By MI
n=1
21x18^2 +36x7^3
=19152
=19x1008
is divisible by 19
Assume p(k) is true
ie
21x18^(2k) +36x7^(3k) =19m
for n=k+1
21x18^(2k+2) +36x7^(3k+3)
=324x[21x18^(2k)] + 343x[36x7^(3k)]
=324x[21x18^(2k)] + 324x[36x7^(3k)] + 19x[36x7^(3k)]
=324x[21x18^(2k+2) +36x7^(3k+3)] +19x[36x7^(3k)]
=324x19m +19x[36x7^(3k)]
=19(324m + 36x7^(3k) )
is divisible by 19
p(k+1) is true
By principle of MI , it is true for all +ve integer n
n=1
21x18^2 +36x7^3
=19152
=19x1008
is divisible by 19
Assume p(k) is true
ie
21x18^(2k) +36x7^(3k) =19m
for n=k+1
21x18^(2k+2) +36x7^(3k+3)
=324x[21x18^(2k)] + 343x[36x7^(3k)]
=324x[21x18^(2k)] + 324x[36x7^(3k)] + 19x[36x7^(3k)]
=324x[21x18^(2k+2) +36x7^(3k+3)] +19x[36x7^(3k)]
=324x19m +19x[36x7^(3k)]
=19(324m + 36x7^(3k) )
is divisible by 19
p(k+1) is true
By principle of MI , it is true for all +ve integer n
追问
感谢感谢,还有两题有可能的话还请大神解答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询