求∫(2-r^2)(√(1+4r^2))rdr
1个回答
展开全部
∫√[(1-r^2)/(1+r^2)]rdr
=(1/2)∫√[(1-r^2)/(1+r^2)]dr^2
r^2=cosu
=(1/2)∫√[(1-cosu)/(1+cosu)]dcosu
=(1/2)∫(1-cosa)/sinu *dcosu
=(-1/2)∫(1-cosu)du
=(-1/2)u+(1/2)sinu+C
=(1/2)arcsin(r^2)+(1/2)√(1-r^2)+C
=(1/2)∫√[(1-r^2)/(1+r^2)]dr^2
r^2=cosu
=(1/2)∫√[(1-cosu)/(1+cosu)]dcosu
=(1/2)∫(1-cosa)/sinu *dcosu
=(-1/2)∫(1-cosu)du
=(-1/2)u+(1/2)sinu+C
=(1/2)arcsin(r^2)+(1/2)√(1-r^2)+C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询