神经网络中ReLU是线性还是非线性函数?如果是线性的话为什么还说它做激活函数比较好? 20
6个回答
光点科技
2023-08-15 广告
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件...
点击进入详情页
本回答由光点科技提供
展开全部
百度知道真是烂得可以,前面几个回答答非所问,实在看不过去了。
relu是非线性激活函数
题主的疑问在于,为什么relu这种“看似线性”(分段线性)的激活函数所形成的网络,居然能够增加非线性的表达能力。
1、首先什么是线性的网络,如果把线性网络看成一个大的矩阵M。那么输入样本A和B,则会经过同样的线性变换MA,MB(这里A和B经历的线性变换矩阵M是一样的)。
2、的确对于单一的样本A,经过由relu激活函数所构成神经网络,其过程确实可以等价是经过了一个线性变换M1,但是对于样本B,在经过同样的网络时,由于每个神经元是否激活(0或者Wx+b)与样本A经过时情形不同了(不同样本),因此B所经历的线性变换M2并不等于M1。因此,relu构成的神经网络虽然对每个样本都是线性变换,但是不同样本之间经历的线性变换M并不一样,所以整个样本空间在经过relu构成的网络时其实是经历了非线性变换的。
3、还有一种解释就是,不同样本的同一个feature,在通过relu构成的神经网络时,流经的路径不一样(relu激活值为0,则堵塞;激活值为本身,则通过),因此最终的输出空间其实是输入空间的非线性变换得来的。
4、更极端的,不管是tanh还是sigmoid,你都可以把它们近似看成是分段线性的函数(很多段),但依然能够有非线性表达能力;relu虽然只有两段,但同样也是非线性激活函数,道理与之是一样的。
5、relu的优势在于运算简单,网络学习速度快
relu是非线性激活函数
题主的疑问在于,为什么relu这种“看似线性”(分段线性)的激活函数所形成的网络,居然能够增加非线性的表达能力。
1、首先什么是线性的网络,如果把线性网络看成一个大的矩阵M。那么输入样本A和B,则会经过同样的线性变换MA,MB(这里A和B经历的线性变换矩阵M是一样的)。
2、的确对于单一的样本A,经过由relu激活函数所构成神经网络,其过程确实可以等价是经过了一个线性变换M1,但是对于样本B,在经过同样的网络时,由于每个神经元是否激活(0或者Wx+b)与样本A经过时情形不同了(不同样本),因此B所经历的线性变换M2并不等于M1。因此,relu构成的神经网络虽然对每个样本都是线性变换,但是不同样本之间经历的线性变换M并不一样,所以整个样本空间在经过relu构成的网络时其实是经历了非线性变换的。
3、还有一种解释就是,不同样本的同一个feature,在通过relu构成的神经网络时,流经的路径不一样(relu激活值为0,则堵塞;激活值为本身,则通过),因此最终的输出空间其实是输入空间的非线性变换得来的。
4、更极端的,不管是tanh还是sigmoid,你都可以把它们近似看成是分段线性的函数(很多段),但依然能够有非线性表达能力;relu虽然只有两段,但同样也是非线性激活函数,道理与之是一样的。
5、relu的优势在于运算简单,网络学习速度快
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、严格来讲 ReLU函数算是分段线性函数。中间隐层激活函数选用线性函数(例如恒等函数)不好,是因为算下来多层网络和单层网络一个效果。其实激活函数的存在是为了神经网络更好的拟合目标函数;
2、ReLU比sigmoid或tanh好 是因为他的收敛速度比另外两个快很多(sigmoid自变量比较大时导数趋于零 采用梯度下降法 反应慢,多层网络更为明显),计算量也要小(ReLU只需要和阈值做比较,不需要带入函数计算)。
2、ReLU比sigmoid或tanh好 是因为他的收敛速度比另外两个快很多(sigmoid自变量比较大时导数趋于零 采用梯度下降法 反应慢,多层网络更为明显),计算量也要小(ReLU只需要和阈值做比较,不需要带入函数计算)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
relu导数不是常数,非线性的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询