4个回答
展开全部
方法一:
令u=e^x
f'(u)=1+u^3
f(u) = ∫f'(u)du = u + u^4/4 +c
f(0) = 1
C=1
f(x) = x+x^4/4 + 1
方法二:
f'(e^x) = 1+e^3x
∫f'(e^x)e^xdx = ∫(1+e^3x)e^xdx
f(e^x) = e^x+e^4x/4 + C
f(x) = x + x^4/4 + C
f(0) = 1 C = 1
f(x) = x + x^4/4 + 1
令u=e^x
f'(u)=1+u^3
f(u) = ∫f'(u)du = u + u^4/4 +c
f(0) = 1
C=1
f(x) = x+x^4/4 + 1
方法二:
f'(e^x) = 1+e^3x
∫f'(e^x)e^xdx = ∫(1+e^3x)e^xdx
f(e^x) = e^x+e^4x/4 + C
f(x) = x + x^4/4 + C
f(0) = 1 C = 1
f(x) = x + x^4/4 + 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询