二重积分的交换积分次序怎么交换?
1、首先要作出积分的区域,再看先对哪个做出积分,如果先对x积分,则作一条平行于x轴的直线穿过积分区域,与积分区域的交点就是积分上下限,同理,如果是先对y积分,就作一条平行于y轴的,直线穿过积分上下限。
2、交换积分次序的时候,根据积分区域的不同,可能会涉及到把两个积分合成一个积分,也可能会把一个积分分成两个积分,所以具体依积分区域而定。
3、由已知的累次积分写出积分的区域D,然后再画出D的示意图,再由D的示意图画出写出D的另一类的表达式,从而就可以写出表达式。
扩展资料:
积分的线性性质
性质1 (积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即
性质2 (积分满足数乘) 被积函数的常系数因子可以提到积分号外,即
(k为常数)
比较性
性质3 如果在区域D上有f(x,y)≦g(x,y),则
二重积分的交换积分次序交换方法是:
画出积分区域的草图,并解出联立方程的交点坐标;
从原则上来说,尽可能一次性地积分积出来最好,也就是说,积分区域最好是一个联通域,在这个联通域内,不需要将图形分块。换句话说,就是一次性先从左到右然后从上到下积分,或一次性先从上到下然后从左到右积分。第一次一般是从函数积分积到函数,
第二次一般是固定的一点积分到另一点。有时候上面的方法并不适用,不得不将图形切割成几小块,这是有被积函数的形式决定的。譬如sin(x^2)根本无法积分,如果能先对y积分,积到y=x,就可以积出来了。
二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
二重积分的定义:
设二元函数z=f(x,y)定义在有界闭区域D上,将区域D任意分成n个子域Δδi(i=1,2,3,…,n),并以Δδi表示第i个子域的面积.在Δδi上任取一点(ξi,ηi),作和lim n→ ∞ (n/i=1 Σ(ξi,ηi)Δδi).如果当各个子域的直径中的最大值λ趋于零时,此和式的极限存在,则称此极限为函数f(x,y)在区域D上的二重积分,记为∫∫f(x,y)dδ,即∫∫f(x,y)dδ=limλ →0(Σf(ξi,ηi)Δδi)
这时,称f(x,y)在D上可积,其中f(x,y)称被积函数,f(x,y)dδ称为被积表达式,dδ称为面积元素, D称为积分域,∫∫称为二重积分号。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。