高数,常数项级数敛散性的判断

 我来答
sjh5551
高粉答主

2018-06-30 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:8228万
展开全部
a = kπ (k 为整数)时, sina = 0,级数收敛。
a ≠ kπ (k 为整数)时,sina ≠ 0,
ρ = lim<n→∞>a<n+1>/a<n>
= lim<n→∞> (n+1)! n^n/[(n+1)^(n+1) n!]
= lim<n→∞> n^n/[(n+1)^n] = lim<n→∞> [n/(n+1)]^n
= lim<n→∞> [1-1/(n+1)]^n = lim<n→∞> {[1-1/(n+1)]^[-(n+1)]}^[-n/(n+1)]
= e^lim<n→∞>[-n/(n+1)] = 1/e < 1, 级数收敛,绝对收敛。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式