大数据主要有三个就业方向,大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。又可分为以下十大职位:
一、ETL研发
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
二、Hadoop开发
Hadoop的核心是HDFS和MapReduce.HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce、Pig等的需求将持续增长。
三、可视化(前端展现)工具开发
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。
2022-09-21 广告
大数据分析已广泛应用于各个领域,无论是国家政府部门、企事业单位,大数据分析都是进行决策和制作决定的重要环节。各种应用于分析无处不在,已经处于风口行业,属于朝阳行业,可以说是前景很好,大数据分析专职岗位有:大数据分析师,大数据分析员,大数据分析主管等,为企业决策层提供详细和准确的数据依据。有一些小伙伴想转行大数据,但是苦于纠结,犹豫,害怕就业前景不好,害怕行业发展前景不好,那今天小编就来给各位分析一下,大数据就业前景怎么样?
首先来说人才缺口,未来3至5年,中国需要200万+大数据人才,目前大数据从业人数不足50万,市场需求远远得不到满足。总结来说就是,未来大数据人才缺口会越来越大,缺的人多了,自然好就业。
然后来看职位薪资,普通大数据开发工程师的基本岗位薪资起步即1万+,一般入职薪资13000元左右,3年以上工作大数据开发工程师薪资高达30000元/月。
接着来看行业前景,2017年中国大数据产业总体规模为4700亿元人民币,预计2018年将突破5700亿元,未来大数据与云计算、AI相结合,将缔造数百个就业新岗位。说白了就是行业前景可观,未来可期。
最后看看最实际的问题,企业需求,BAT、滴滴、今日头条重金招贤纳士,急寻大数据人才,校招年薪水平均再30万以上,80%中小型企业大数据建设已经起步,需求量大增。有大企业需求,未来的就业前景自然不言而喻。
大数据行业应用广泛,大数据职业的相关人才匮乏,人才缺口非常大。职业选择多达几十种,要升职加薪很容易!可以说,未来的大数据工作,就意味着高工资、稳定、广泛的职业使用度、优越感……
2019-10-22 · 大数据人才培养的机构
目前,互联网、物联网、人工智能、金融、体育、在线教育、交通、物流、电商等等,几乎所有的行业都已经涉足大数据,大数据将成为今后整个社会及企业运营的支撑。
大数据就业方向
1. Hadoop大数据开发方向
市场需求旺盛,大数据培训的主体,目前IT培训机构的重点
对应岗位:大数据开发工程师、爬虫工程师、数据分析师 等
2. 数据挖掘、数据分析&机器学习方向
学习起点高、难度大,市面上只有很少的培训机构在做。
对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等
3. 大数据运维&云计算方向
市场需求中等,更偏向于Linux、云计算学科
对应岗位:大数据运维工程师
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
1 数据清洗、收集、爬虫 //偏脚本、爬虫能力
2 数据分析 //偏业务,偏SQL,偏分析能力
3 数据开发 //偏平台,偏工程化、后端开发能力
4 数据挖掘 //偏算法,偏挖掘能力 一般来说,数据分析的门槛最低,其次数据开发和爬虫类,门槛最高的是挖掘,当然薪酬也是相对较高的。
从应用开发入手,你可以往两个方向房展: 1 进一步熟悉架构,提升开发能力,往数据架构师转; 2 从应用工程化往挖掘工程师转,需要自己多学算法相关的知识;
大数据主要有三个就业方向,大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。又可分为以下十大职位:
(1) ETL研发:
ETL研发,主要负责将分散的,异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
(2) Hadoop开发:
Hadoop的核心是HDFS和MapReduce,HDFS提供了海量数据的存储,MapReduce提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapReduce,Pig等的需求将持续增长。
(3) 可视化(前端展现)工具开发:
可视化开发就是在可视化开发工具提供的图形用户界面上,通过操作界面元素,由可视化开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
(4) 信息架构开发:
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
(5)数据仓库研究
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
(6)OLAP开发
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
(7)数据科学研究
数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
(8)数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
(9)企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。