相对偏差的计算公式是什么?
计算公式:
用途:常用于分析化学的定量实验。
在日常的检验检测工作中,检测结果是否准确并不确定,但可以通过多次测量的方法来得出一个准确的结果,所测量数据的算术平均值就能代表总体的平均水平。
个测量数据偏差的平方和除以数据个数减1的平方根。由于式中对单个数据偏差平方后,较大的偏差更能突出地反映出来,所以标准偏差能更好地说明数据的离散程度,在实际使用中更加常见。
扩展资料:
偏差是测定值与标准值之差,用g(mL)表示。
相对偏差:是绝对偏差与标准值之比,用%表示。 比如: 绝对偏差=标签明示值-测定值 相对偏差=[(标签明示值-测定值)/标签明示值]×100%。
绝对偏差=标签明示值-测定值
相对偏差=[(标签明示值-测定值)/标签明示值]×100%
标准差与变量及期望值的大小有关,项目比较时,若某一项目的期望值及标准差均比其他项目大,不能简单地认为标准差大的项目风险就一定大,还应进一步用两者的相对指标进行分析和比较,该相对指标即偏差系数。
参考资料来源:百度百科——相对偏差
参考资料来源:百度百科——相对标准偏差
2024-11-13 广告
相对偏差的计算公式如下:
1、相关概念:
平均值
在日常的检验检测工作中,检测结果是否准确并不确定,但可以通过多次测量的方法来得出一个准确的结果,所测量数据的算术平均值就能代表总体的平均水平。设:对一个样品重复测定n次,测定值分别为 ,则有限次测量数据的算术平均值用 表示,计算公式如下:
2、标准偏差:在实际测定中,如果使用标准偏差,则能反映检测结果的精密程度。对一个样品做有限次测量,这时测定的标准偏差(SD或 S)用公式计算:
3、应用举例。
虽然标准偏差能够反映检测结果的精密程度,但是对于下面两组数据则无法正确体现:
第一组:10.1、10.2、10.3、10.4、10.5.
虽然这两组数据的 SD 都为0.158,但第一组数据是在10.3的基础上“波动”0.158,第二组数据是在“0.3”的基础上“波动”0.158,两组数据的“波动基础”明显不同。这样,必须引人“相对标准偏差”这个概念来体现这种波动的相对大小。相对标准偏差( RSD) 的计算公式如式(1),这样,第一组数据的 ,第二组数据的 ,精密程度立刻体现出来。