函数的连续性

例24.为什么x趋近于0-时等于-1,x趋近于0+等于1... 例24.为什么x趋近于0-时等于-1,x趋近于0+等于1 展开
 我来答
一不由心处认真2571
2018-10-10 · TA获得超过2236个赞
知道大有可为答主
回答量:5521
采纳率:0%
帮助的人:694万
展开全部
①连续是从点出发定义的。x0是定义域一点,对任意ε>0,存在δ>0,使得当|x-x0|<δ时 |f(x)-f(x0)|0,你找的那个δ>0可以和x0和ε都有关系。对于不同的x0,即使给的ε是同一个数,找的δ也往往不同。 ②一直连续直接从全局出发定义:在一个区间上如果任给ε>0,都存在一个δ>0,使得区间上任意两个点x'和x''只要满足了|x'-x''|<δ,那么就有|f(x')-f(x'')|0以后可以找到一个公共的δ,所有区间上的x一致地适用。换句话说,如果把连续的定义里面加上存在一个和x0无关的δ,那么就是一直连续的等价定义。上面说的都是理解层面的,具体解题还是按照原式定义出发比较方便,个人认为。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式