数学中,下面第5个积分题怎么求来着?求个过程。
展开全部
令u=tan(x/2),则sinx=2u/(1+u^2),cosx=(1-u^2)/(1+u^2),dx=2du/(1+u^2)
原式=∫2du/(1+u^2)[4u/(1+u^2)-(1-u^2)/(1+u^2)+5]
=∫2du/(4u-1+u^2+5+5u^2)
=∫du/(3u^2+2u+2)
=(1/3)*∫du/(u^2+2u/3+2/3)
=(1/3)*∫d(u+1/3)/[(u+1/3)^2+5/9]
=(1/3)*(3/√5)*arctan[3(u+1/3)/√5]+C
=(1/√5)*arctan[(3u+1)/√5]+C
=(1/√5)*arctan{[3tan(x/2)+1]/√5}+C,其中C是任意常数
原式=∫2du/(1+u^2)[4u/(1+u^2)-(1-u^2)/(1+u^2)+5]
=∫2du/(4u-1+u^2+5+5u^2)
=∫du/(3u^2+2u+2)
=(1/3)*∫du/(u^2+2u/3+2/3)
=(1/3)*∫d(u+1/3)/[(u+1/3)^2+5/9]
=(1/3)*(3/√5)*arctan[3(u+1/3)/√5]+C
=(1/√5)*arctan[(3u+1)/√5]+C
=(1/√5)*arctan{[3tan(x/2)+1]/√5}+C,其中C是任意常数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询