求x多少度
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
用正弦余弦定理,然后进行三角函数的化简。
设AB=1,BD=CD=sin80°/sin40°=2cos40°
AD=sin60°/sin40°,AE=sin80°/sin30°=2sin80°
DE²=AD²+AE²-2AD.AE.cos10°
=sin²60°/sin²40°+4sin²80°-2.sin60°/sin40°.2sin80°cos10°
=3/4sin²40°+4sin²80°(1-sin60°/sin40°)
=3/4sin²40°-4sin²80°(sin60°-sin40°)/sin40°
=3/4sin²40°-4sin²80°2cos50°sin10°/sin40°
=3/4sin²40°-8sin²80°sin10°
=3/4sin²40°-4sin80°sin160°
=3/4sin²40°-4sin80°sin20°
=3/4sin²40°-2(cos60°-cos100°)
=3/4sin²40°-1-2cos80°)
=(3-4sin²40°-8sin²40°cos80°)/4sin²40°
=(3-2(1-cos80°)-4(1-cos80°)cos80°)/4sin²40°
=(1+2cos80°-4cos80°+4cos²80°)/4sin²40°
=(1-2cos80°+4cos²80°)/4sin²40°
=(1-2cos80°+2(1+cos160°))/4sin²40°
=(3-2cos80°-2cos20°)/4sin²40°
=(3-2(cos80°+cos20°))/4sin²40°
=(3-4cos50°cos30°)/4sin²40°
=(3-2√3cos50°)/4sin²40°
=√3(√3/2-cos50°)/2sin²40°
=√3(cos30°-cos50°)/2sin²40°
=2√3sin40°sin10°/2sin²40°
=√3sin10°/sin40°
=2sin60°sin10°/sin40°
=(cos50°-cos70°)/sin40°
=1-sin20°/2sin20°cos20°
=(1-1/2cos20°)
=(cos20°-cos60°)/cos20°
=2sin40°sin20°/cos20°
=4sin20°sin20°
=4sin²20°
DE=2sin20°
cosx=(DE²+AE²-AD²)/2DE.AE
=(4sin²20°+4sin²80°-sin²60°/sin²40°)/[2.2sin20°.2sin80°]
=(4sin²20°+4sin²80°-3/4sin²40°)/[8sin20°sin80°]
=[2(1-cos40°]+2(1-cos160°)-3/4sin²40°]/[8sin20°sin80°]
=[4-2cos40°-2cos160°-3/4sin²40°]/[8sin20°sin80°]
=[4-2cos40°+2cos20°-3/4sin²40°]/[8sin20°sin80°]
=[4+2(cos20°-cos40°)-3/4sin²40°]/[8sin20°sin80°]
=[4+4sin30°sin10°-3/4sin²40°]/[8sin20°sin80°]
=[4+2sin10°-3/4sin²40°]/[8sin20°sin80°]
=[16sin²40°+8sin10°sin²40°-3]/[32sin20°sin80°sin²40°]
=[8(1-cos80°)+4sin10°(1-cos80°)-3]/[32sin20°sin80°sin²40°]
=[5-8cos80°+4cos80°(1-cos80°)]/[32sin20°sin80°sin²40°]
=[5-8cos80°+4cos80°-4cos²80°)]/[32sin20°sin80°sin²40°]
=[5-4cos80°-2(1+cos160°)]/[32sin20°sin80°sin²40°]
=[3/4-cos80°+1/2.cos20°]/[8sin20°sin80°sin²40°]
=[cos²30°-cos80°+sin30°cos20°)/[8sin20°sin80°sin²40°]
=[cos²30°-cos80°+(1/2)(sin50°+sin10°)】/[8sin20°sin80°sin²40°]
=[cos²30°-1/2.sin10°+(1/2)sin50°】/[8sin20°sin80°sin²40°]
=[cos²30°+(1/2)(sin50°-sin10°)】/[8sin20°sin80°sin²40°]
=[cos²30°+cos30°sin20°】/[8sin20°sin80°sin²40°]
=cos30°(cos30°+sin20°)/[8sin20°sin80°sin²40°]
=cos30°(sin60°+sin20°)/[8sin20°sin80°sin²40°]
=2cos30°sin40°cos20°/[8sin20°sin80°sin²40°]
=cos30°cos20°/[4sin20°sin80°sin40°]
=cos30°cos20°/[2(cos20°-cos60°)sin80°]
=cos30°cos20°/[2cos20°sin80°-sin80°]
=cos30°cos20°/[sin100°+sin60°-sin80°]
=cos20°
x=20°