求助数学大神帮忙求解一下函数
minC=12800x1+11650x2+12100x3+8000(y1+y2+y3)+10[(x1+250+130-260)+(x1+x2+250+135-530)+(...
minC=12800x1+11650x2+12100x3+8000(y1+y2+y3)+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
x1+250≥260
x1+x2+250≥530
x1+x2+x3+250≥770
xi*(yi-1)=0,i=1,2,3 yi{0,1}x1,x2,x3≥0
求解MINC最小值时x1,x2,x3各是多少? 展开
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
x1+250≥260
x1+x2+250≥530
x1+x2+x3+250≥770
xi*(yi-1)=0,i=1,2,3 yi{0,1}x1,x2,x3≥0
求解MINC最小值时x1,x2,x3各是多少? 展开
展开全部
已知:xi*(yi-1)=0,有:yi-1=0,得:yi=1,故:y1+y2+y3=3
又知:x1+250≥260,所以:x1≥10
又知:x1+x2+250≥530,有:x1+x2≥280,则:x2≥280-x1≥280-10=270
又知:x1+x2+x3+250≥770,有:x3≥520-(x1+x2)≥520-280=240
即:x1≥10、x2≥270、x3≥240
对所给minC式化简:
minC=12830x1+11670x2+12110x3+8000(y1+y2+y3)-4250
=12830x1+11670x2+12110x3+8000×3-4250
=12830x1+11670x2+12110x3+19750
显然:x1、x2、x3取最小值时,minC有最小值,
即:minC取最小值时,x1=10、x2=270、x3=240。
又知:x1+250≥260,所以:x1≥10
又知:x1+x2+250≥530,有:x1+x2≥280,则:x2≥280-x1≥280-10=270
又知:x1+x2+x3+250≥770,有:x3≥520-(x1+x2)≥520-280=240
即:x1≥10、x2≥270、x3≥240
对所给minC式化简:
minC=12830x1+11670x2+12110x3+8000(y1+y2+y3)-4250
=12830x1+11670x2+12110x3+8000×3-4250
=12830x1+11670x2+12110x3+19750
显然:x1、x2、x3取最小值时,minC有最小值,
即:minC取最小值时,x1=10、x2=270、x3=240。
展开全部
先化简:
minC=12800x1+11650x2+12100x3+8000(y1+y2+y3)+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
=12830x1+11670x2+12110x3+8000(y1+y2+y3)
x1+250≥260,x1≥0,即可
x1+x2+250≥260+x2≥530,x2≥270;
x1+x2+x3+250≥530+x3≥770,x3≥240;
xi*(yi-1)=0,i=1,2,3 yi∈{0,1},x1,x2,x3≥0
求解MINC最小值时x1,x2,x3各是多少?
要求C最小,yi取0,
minC=12800x1+11650x2+12100x3+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
各项以最小值代入:考虑C中权数x1>x3>x2,x1尽可能小
x2=270,x1+x2+250=x1+520≥530,x1≥10;
x1+x2+x3+250=10+270+240+250=770,正好满足。
minC=12800x1+11650x2+12100x3+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
=12800×10+11650×270+12100×240+10(130+135+120)=6181350
minC=12800x1+11650x2+12100x3+8000(y1+y2+y3)+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
=12830x1+11670x2+12110x3+8000(y1+y2+y3)
x1+250≥260,x1≥0,即可
x1+x2+250≥260+x2≥530,x2≥270;
x1+x2+x3+250≥530+x3≥770,x3≥240;
xi*(yi-1)=0,i=1,2,3 yi∈{0,1},x1,x2,x3≥0
求解MINC最小值时x1,x2,x3各是多少?
要求C最小,yi取0,
minC=12800x1+11650x2+12100x3+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
各项以最小值代入:考虑C中权数x1>x3>x2,x1尽可能小
x2=270,x1+x2+250=x1+520≥530,x1≥10;
x1+x2+x3+250=10+270+240+250=770,正好满足。
minC=12800x1+11650x2+12100x3+
10[(x1+250+130-260)+(x1+x2+250+135-530)+(x1+x2+x3+250+120-770)]
=12800×10+11650×270+12100×240+10(130+135+120)=6181350
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询