向量叉乘公式是什么?
叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。
|向量c|=|向量a×向量b|=|a||b|sin<a,b>
向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断(用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此
向量的外积不遵守乘法交换率,因为向量a×向量b= -
向量b×向量a
在物理学中,已知力与力臂求力矩,就是向量的外积,即叉乘。
将向量用坐标表示(三维向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
则
向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)。
数学中,既有大小又有方向且遵循平行四边形法则的量叫做向量(vector)。
向量
向量
有方向与大小,分为自由向量与固定向量。
数学中,把只有大小但没有方向的量叫做数量,物理中称为标量。例如距离、质量、密度、温度等。
注:在线性代数中(实数空间/复数空间)的向量是指n个实数/复数组成的有序数组,称为n维向量。α=(a1,a2,…,an) 称为n维向量。其中ai称为向量α的第i个分量。
("a1"的"1"为a的下标,"ai"的"i"为a的下标,其他类推)
在编程语言中,也存在向量。向量有起点,有方向。常用一个带箭头的线段表示。
广告 您可能关注的内容 |