如何计算“∫lnxdx”的值?
2024-10-28 广告
∫lnxdx=xlnx-x+C。C为常数。
解答过程如下:
∫lnxdx
=xlnx-∫xd(lnx)
=xlnx-∫1dx
=xlnx-x+C
扩展资料:
分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。
常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C
用分部积分,得到上式=xlnx|
x=1-xlnx|x=0-[xdlnx在(0,1)的积分]
而xlnx在x=1时为0,而xlnx在x=0时为0(这里要用L'Hospital法则得到当x趋于0时,lnx为x的负的任意小的阶即如果我们要计算(x^a)*lnx当x趋于0时的极限,这里a是一个任意小的正数,由于x^a趋于0,lnx趋于负无穷,故用L'Hospital法则,将(x^a)*lnx写作lnx/x^(-a),
再运用无穷比无穷的L'Hospital法则,上下两式都对x求导得(1/x)/(-ax^(-a-1))=(-1/a)x^a,当x趋于0时,对任意a>0,(-1/a)x^a都趋于0,所以|xlnx|其实小于等于常数倍的x的(1-a)的阶,而x^(1-a)当x=0时为0,所以xlnx在x=0时为0),xdlnx=x*(1/x)dx=dx,dx在(0,1)的积分=1,综上,lnxdx区间(0,1)的广义积分为-1