1个回答
展开全部
∑<n=1,∞> (2x+1)^n/(3n-1) = ∑<n=1,∞>[2^n/(3n-1)](x+1/2)^n
收敛半径 R = lim<n→∞>a<n>/a<n+1>
= lim<n→∞>[2^n/(3n-1)]/[2^(n+1)(3n+2)]
= lim<n→∞>[(3n+2)/(3n-1)]/2= 1/2.
x = 1/2 时,级数变为 ∑<n=1,∞> 2^n/(3n-1) , 发散;
x = -1/2 时,级数变为 ∑<n=1,∞> 0 = 0 , 收敛。
则收敛域即收敛区间是 x∈[-1/2, 1/2)
收敛半径 R = lim<n→∞>a<n>/a<n+1>
= lim<n→∞>[2^n/(3n-1)]/[2^(n+1)(3n+2)]
= lim<n→∞>[(3n+2)/(3n-1)]/2= 1/2.
x = 1/2 时,级数变为 ∑<n=1,∞> 2^n/(3n-1) , 发散;
x = -1/2 时,级数变为 ∑<n=1,∞> 0 = 0 , 收敛。
则收敛域即收敛区间是 x∈[-1/2, 1/2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询