1个回答
展开全部
x->0
分子
√(1+x^2) = 1+ (1/2)x^2 +o(x^2)
x+√(1+x^2) = 1+ x+(1/2)x^2 +o(x^2)
ln[x+√(1+x^2)}
=ln[1+ x+(1/2)x^2 +o(x^2)]
= [x+(1/2)x^2] -(1/2)[x+(1/2)x^2]^2 +o(x^2)
= [x+(1/2)x^2] -(1/2)[x^2+o(x^2)] +o(x^2)
=x +o(x^2)
ln(1+x) = x -(1/2)x^2 +o(x^2)
ln(1+x) -ln[x+√(1+x^2)] = -(1/2)x^2 +o(x^2)
分母
ln[x+√(1+x^2)] = x +o(x^2)
ln(1+x) =x+o(x)
ln[x+√(1+x^2)] .ln(1+x) = x^2 +o(x^2)
lim(x->0+) f(x)
=lim(x->0+){ 1/ln[x+√(1+x^2)] - 1/ln(1+x) }
=lim(x->0+) { ln(1+x) -ln[x+√(1+x^2)] }/{ ln[x+√(1+x^2)].ln(1+x) }
=lim(x->0+) -(1/2)x^2 / x^2
=-1/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询