
2个回答
展开全部
非齐次线性方程组的任意两个解相减,结果都是对应齐次线性方程组的解。
因为:
Aη1=b,Aη3=b
两式相减得到A(η3-η1)=0
即,η3-η1是齐次线性方程组Ax=0的解。
知道A的秩为2,找到两个不相关的解,即可凑成基础解系。
因为:
Aη1=b,Aη3=b
两式相减得到A(η3-η1)=0
即,η3-η1是齐次线性方程组Ax=0的解。
知道A的秩为2,找到两个不相关的解,即可凑成基础解系。
展开全部
因为 r(A) = n-1
所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.
所以AX=0的任一个非零解都是它的基础解系.
因为 AA*=|A|E=0.
所以 A* 的列向量都是 AX=0 的解.
再由已知A中某元素代数余子式不等于0,不妨设 Aij≠0.
则 (Ai1,Ai2,...,Aij,...,Ain)^T 是AX=0的非零解向量
故 (Ai1,Ai2,.,Ain)^T 是AX=0的一个基础解系.
所以 方程组的全部解为 c(Ai1,Ai2,.,Ain)^T
所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.
所以AX=0的任一个非零解都是它的基础解系.
因为 AA*=|A|E=0.
所以 A* 的列向量都是 AX=0 的解.
再由已知A中某元素代数余子式不等于0,不妨设 Aij≠0.
则 (Ai1,Ai2,...,Aij,...,Ain)^T 是AX=0的非零解向量
故 (Ai1,Ai2,.,Ain)^T 是AX=0的一个基础解系.
所以 方程组的全部解为 c(Ai1,Ai2,.,Ain)^T
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询