高数题,急!!! 100
2个回答
展开全部
这是高数知识,回去好好看看高数课本吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
将f(x)分别在x=a,x=b处展开成带拉格朗日型余项的一阶泰勒公式
f(x)=f(a)+f'(a)(x-a)+(1/2!)f"(m1)(x-a)^2,(a<m1<x)
f(x)=f(b)+f'(b)(x-b)+(1/2!)f"(m2)(x-b)^2,(b<m2<x)
在公式中取x=(a+b)/2,并利用题设得
f[(a+b)/2]=f(a)+(1/2)f"(m1)[(b-a)/2]^2
f[(a+b)/2]=f(b)+(1/2)f"(m2)[(b-a)/2]^2
两式相减消去f[(a+b)/2]得
f"(m1)-f"(m2)=8[f(b)-f(a)]/(b-a)^2,则有
|f"(m1)|+|f"(m2)|>=8[f(b)-f(a)]/(b-a)^2
从而在m1,m2中至少有一个使得在该点的二阶导数的绝对值不小于4[f(b)-f(a)]/(b-a)^2,把该点取为m,则有m∈(a,b),使得|f''(m)|>=4[f(b)-f(a)]/(b-a)^2
将f(x)分别在x=a,x=b处展开成带拉格朗日型余项的一阶泰勒公式
f(x)=f(a)+f'(a)(x-a)+(1/2!)f"(m1)(x-a)^2,(a<m1<x)
f(x)=f(b)+f'(b)(x-b)+(1/2!)f"(m2)(x-b)^2,(b<m2<x)
在公式中取x=(a+b)/2,并利用题设得
f[(a+b)/2]=f(a)+(1/2)f"(m1)[(b-a)/2]^2
f[(a+b)/2]=f(b)+(1/2)f"(m2)[(b-a)/2]^2
两式相减消去f[(a+b)/2]得
f"(m1)-f"(m2)=8[f(b)-f(a)]/(b-a)^2,则有
|f"(m1)|+|f"(m2)|>=8[f(b)-f(a)]/(b-a)^2
从而在m1,m2中至少有一个使得在该点的二阶导数的绝对值不小于4[f(b)-f(a)]/(b-a)^2,把该点取为m,则有m∈(a,b),使得|f''(m)|>=4[f(b)-f(a)]/(b-a)^2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询